首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recent work in Barrovian metamorphic terranes has found that rocks experience peak metamorphic temperatures across several grades at similar times. This result is inconsistent with most geodynamic models of crustal over‐thickening and conductive heating, wherein rocks which reach different metamorphic grades generally reach peak temperatures at different times. Instead, the presence of additional sources of heat and/or focusing mechanisms for heat transport, such as magmatic intrusions and/or advection by metamorphic fluids, may have contributed to the contemporaneous development of several different metamorphic zones. Here, we test the hypothesis of temporally focussed heating for the Wepawaug Schist, a Barrovian terrane in Connecticut, USA, using Sm–Nd ages of prograde garnet growth and U–Pb zircon crystallization ages of associated igneous rocks. Peak temperature in the biotite–garnet zone was dated (via Sm–Nd on garnet) at 378.9 ± 1.6 Ma (2σ), whereas peak temperature in the highest grade staurolite–kyanite zone was dated (via Sm–Nd on garnet rims) at 379.9 ± 6.8 Ma (2σ). These garnet ages suggest that peak metamorphism was pene‐contemporaneous (within error) across these metamorphic grades. Ion microprobe U–Pb ages for zircon from igneous rocks hosted by the metapelites also indicate a period of syn‐metamorphic peak igneous activity at 380.6 ± 4.7 Ma (2σ), indistinguishable from the peak ages recorded by garnet. A 388.6 ± 2.1 Ma (2σ) garnet core age from the staurolite–kyanite zone indicates an earlier episode of growth (coincident with ages from texturally early zircon and a previously published monazite age) along the prograde regional metamorphic Tt path. The timing of peak metamorphism and igneous activity, as well as the occurrence of extensive syn‐metamorphic quartz vein systems and pegmatites, best supports the hypothesis that advective heating driven by magmas and fluids focussed major mineral growth into two distinct episodes: the first at c. 389 Ma, and the second, corresponding to the regionally synchronous peak metamorphism, at c. 380 Ma.  相似文献   

2.
Garnet crystallization in metapelites from the Barrovian garnet and staurolite zones of the Lesser Himalayan Belt in Sikkim is modelled utilizing Gibbs free energy minimization, multi‐component diffusion theory and a simple nucleation and growth algorithm. The predicted mineral assemblages and garnet‐growth zoning match observations remarkably well for relatively tight, clockwise metamorphic PT paths that are characterized by prograde gradients of ~30 °C kbar?1 for garnet‐zone rocks and ~20 °C kbar?1 for rocks from the staurolite zone. Estimates for peak metamorphic temperature increase up‐structure toward the Main Central Thrust. According to our calculations, garnet stopped growing at peak pressures, and protracted heating after peak pressure was absent or insignificant. Almost identical PT paths for the samples studied and the metamorphic continuity of the Lesser Himalayan Belt support thermo‐mechanical models that favour tectonic inversion of a coherent package of Barrovian metamorphic rocks. Time‐scales associated with the metamorphism were too short for chemical diffusion to substantially modify garnet‐growth zoning in rocks from the garnet and staurolite zones. In general, the pressure of initial garnet growth decreases, and the temperature required for initial garnet growth was reached earlier, for rocks buried closer toward the MCT. Deviations from this overall trend can be explained by variations in bulk‐rock chemistry.  相似文献   

3.
Thermal models for Barrovian metamorphism driven by doubling the thickness of the radiogenic crust typically meet difficulty in accounting for the observed peak metamorphic temperature conditions. This difficulty suggests that there is an additional component in the thermal budget of many collisional orogens. Theoretical and geological considerations suggest that viscous heating is a cumulative process that may explain the heat deficit in collision orogens. The results of 2D numerical modelling of continental collision involving subduction of the lithospheric mantle demonstrate that geologically plausible stresses and strain rates may result in orogen‐scale viscous heat production of 0.1 to >1 μW m?3, which is comparable to or even exceeds bulk radiogenic heat production within the crust. Thermally induced buoyancy is responsible for crustal upwelling in large domes with metamorphic temperatures up to 200 °C higher than regional background temperatures. Heat is mostly generated within the uppermost mantle, because of large stresses in the highly viscous rocks deforming there. This thermal energy may be transferred to the overlying crust either in the form of enhanced heat flow, or through magmatism that brings heat into the crust advectively. The amplitude of orogenic heating varies with time, with both the amplitude and time‐span depending strongly on the coupling between heat production, viscosity and collision strain rate. It is argued that geologically relevant figures are applicable to metamorphic domes such as the Lepontine Dome in the Central Alps. We conclude that deformation‐generated viscous dissipation is an important heat source during collisional orogeny and that high metamorphic temperatures as in Barrovian type metamorphism are inherent to deforming crustal regions.  相似文献   

4.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

5.
A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd. Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to >720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions. There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration. The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.  相似文献   

6.
Garnet porphyroblasts in sillimanite‐bearing pelitic schists contain complex textural and compositional zoning, with considerable variation both within and between adjacent samples. The sillimanite‐bearing schists locally occur in regional Barrovian garnet zone assemblages and are indicative of a persistent lack of equilibrium during prograde metamorphism. Garnet in these Dalradian rocks from the Scottish Highlands preserves evidence of a range of metamorphic responses including initial growth and patchy coupled dissolution–reprecipitation followed by partial dissolution. Individual porphyroblasts each have a unique and variable response to prograde metamorphism and garnet with mainly flat compositional profiles co‐exists with those containing largely unmodified characteristic bell‐shaped Mn profiles. This highlights the need for caution in applying traditional interpretations of effective volume diffusion eliminating compositional variation. Cloudy garnet with abundant fluid inclusions is produced during incomplete modification of the initial porphyroblasts and these porous garnet are then particularly prone to partial replacement in sillimanite‐producing reactions. The modification of garnet via a dissolution–reprecipitation process releases Ca into the effective whole‐rock composition, displacing the pressure–temperature positions of subsequent isograd reactions. This represents the first report of internal metasomatism controlling reaction pathways. The behaviour of garnet highlights the importance of kinetic factors, especially deformation and fluids, in controlling reaction progress and how the resulting variability influences subsequent prograde history. The lack of a consistent metamorphic response, within and between adjacent schists, suggests that on both local and regional scales these rocks have largely not equilibrated at peak metamorphic conditions.  相似文献   

7.
Documentation of pressure–temperature (P–T) histories across an epidote‐amphibolite facies culmination provides new insight into the tectono‐thermal evolution of the Brooks Range collisional orogen. Thermobarometry reveals that the highest grade rocks formed at peak temperatures of 560–600 °C and at pressures of 8–9.5 kbar. The thermal culmination coincides with the apex of a structural dome defined by oppositely dipping S2 crenulation cleavages suggesting post‐metamorphic doming. South of the thermal culmination, greenschist facies and lowermost epidote‐amphibolite facies rocks preserve widespread evidence for an early blueschist facies metamorphism. In contrast, no evidence for an early blueschist facies metamorphism was found in similar grade rocks of the northern flank, indicating that the southern flank underwent initial deeper burial during southward underthrusting of the continental margin. Thus, while the dome shows a symmetric distribution of peak temperatures, the P–T paths followed by the two flanks must have varied. This variation suggests that final thermal re‐equilibration to greenschist and epidote–amphibolite facies conditions did not result from a simple process of southward underthrusting followed by thermal re‐equilibration from the bottom upward. The new data are inconsistent with a previous model that invokes such re‐equilibration, along with northward thrusting of epidote–amphibolite facies rocks over lower grade rocks presently on the southern flank of the culmination, to produce an inverted metamorphic field gradient. Instead, it is suggested that following blueschist facies metamorphism, rocks of the southern and northern flanks were juxtaposed, during which time the more deeply buried south flank was partially emplaced above rocks to the north, where they escaped Albian epidote–amphibolite facies overprinting. Porphyroblast growth, which post‐dates the main fabric on the north flank of the culmination may be the result of Albian thermal re‐equilibration following this deformation. Post‐metamorphic doming resulted from a combination of Albian‐Cenomanian extension and Tertiary deformation.  相似文献   

8.
Secular changes in the architecture, thermal state, and metamorphic style of global orogens are thought to have occurred since the Archean; however, despite widespread research, the driving mechanisms for such changes remain unclear. The Paleoproterozoic may prove to be a key era for investigating secular changes in global orogens, as it marks the earliest stage of an eon that saw the onset of modern-style global tectonics. The 2.1 Ga granulite-facies Mistinibi-Raude Domain (MRD), located in the Southeastern Churchill Province, Canada, offers a rare exposure of Paleoproterozoic high metamorphic grade supracrustal sequences (Mistinibi Complex, MC). Rocks from this domain were subjected to petrochronological investigations to establish PTtX evolutions and to provide first order thermal state, burial and exhumation rates, and metamorphic gradients for the transient Paleoproterozoic times. To obtain comprehensive insight into the PTtX evolution of the MRD, we used multi-method geochronology—Lu–Hf on garnet and U–Pb on zircon and monazite—integrated with detailed petrography, trace element chemistry, and phase equilibria modelling. Despite the extensive use of zircon and monazite as geochronometers, their behaviour in anatectic conditions is complex, leading to substantial ambiguity in interpreting the timing of prograde metamorphism. Our results indicate a clockwise metamorphic path involving significant melt extraction from the metasedimentary rocks, followed by cooling from >815°C to ~770°C at ~0.8 GPa. The timing of prograde burial and cooling from supra- to subsolidus conditions is constrained through garnet, monazite, and zircon petrochronology at 2,150–2,120 Ma and at 2,070–2,080 Ma, respectively. These results highlight long-lived residence of the rocks at mid-crustal supra-solidus conditions (55–70 Ma), with preserved prograde and retrograde supra-solidus monazite and zircon. The rocks record extremely slow burial rates (0.25–0.30 km/Ma) along a high metamorphic gradient (900–1,000°C/GPa), which appears symptomatic of Paleoproterozoic orogens. The MC did not record any significant metamorphism after 2,067 Ma, despite having collided with terranes that record high-grade metamorphism during the major 1.9–1.8 Ga Trans-Hudson orogeny. The MC would therefore represent a remnant of a local early Paleoproterozoic metamorphic infrastructure, later preserved as superstructure in the large hot Trans-Hudson orogen.  相似文献   

9.
The South Tibetan detachment system (STDS) in the Himalayan orogen is an example of normal‐sense displacement on an orogen‐parallel shear zone during lithospheric contraction. Here, in situ monazite U(–Th)–Pb geochronology is combined with metamorphic pressure and temperature estimates to constrain pressure–temperature–time (P–T–t) paths for both the hangingwall and footwall rocks of a Miocene ductile component of the STDS (outer STDS) now exposed in the eastern Himalaya. The outer STDS is located south of a younger, ductile/brittle component of the STDS (inner STDS), and is characterized by structurally upward decreasing metamorphic grade corresponding to a transition from sillimanite‐bearing Greater Himalayan sequence rocks in the footwall with garnet that preserves diffusive chemical zoning to staurolite‐bearing Chekha Group rocks in the hangingwall, with garnet that records prograde chemical zoning. Monazite ages indicate that prograde garnet growth in the footwall occurred prior to partial melting at 22.6 ± 0.4 Ma, and that peak temperatures were reached following c. 20.5 Ma. In contrast, peak temperatures were reached in the Chekha Group hangingwall by c. 22 Ma. Normal‐sense (top‐to‐the‐north) shearing in both the hangingwall and footwall followed peak metamorphism from c. 23 Ma until at least c. 16 Ma. Retrograde P–T–t paths are compatible with modelled P–T–t paths for an outer STDS analogue that is isolated from the inner STDS by intervening extrusion of a dome of mid‐crustal material.  相似文献   

10.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

11.
Thermodynamic modelling of metamorphic rocks increases the possibilities of deciphering prograde paths that provide important insights into early orogenic evolution. It is shown that the chloritoid–staurolite transition is not only an indicator of temperature on prograde P–T paths, but also a useful indicator of pressure. The approach is applied to the Moravo‐Silesian eastern external belt of the Bohemian Massif, where metamorphic zones range from biotite to staurolite‐sillimanite. In the staurolite zone, inclusions of chloritoid occur in garnet cores, while staurolite is included at garnet rims and is widespread in the matrix. Chloritoid XFe = 0.91 indicates transition to staurolite at 5 kbar and 550 °C and consequently, an early transient prograde geothermal gradient of 29 °C km?1. The overall elevated thermal evolution is then reflected in the prograde transition of staurolite to sillimanite and in the achievement of peak temperature of 660 °C at a relatively low pressure of 6.5 kbar. To the south and to the west of the studied area, high‐grade metamorphic zones record a prograde path evolution from staurolite to kyanite and development of sillimanite on decompression. Transition of chloritoid to staurolite was reported in two places, with chloritoid XFe = 0.75–0.80, occurring at 8–10 kbar and 560–580 °C, and indicating a transient prograde geothermal gradient of 16–18 °C km?1. These data show variable barric evolutions along strike and across the Moravo‐Silesian domain. Elevated prograde geothermal gradient coincides with areas of Devonian sedimentation and volcanism, and syn‐ to late Carboniferous intrusions. Therefore, we interpret it as a result of heat inherited from Devonian rifting, further fuelled by syntectonic Carboniferous intrusions.  相似文献   

12.
New petrographic and microstructural observations, mineral equilibria modelling and U/Pb (monazite) geochronological studies were carried out to investigate the relationships between deformation and metamorphism across the Rehamna massif (Moroccan Variscan belt). In this area, typical Barrovian (muscovite to staurolite) zones developed in Cambrian to Carboniferous metasedimentary rocks that are distributed around a dome‐like structure. First assemblages are characterized by the presence of locally preserved andalusite, followed by prograde evolution culminating at 6 kbar and 620 °C in the structurally deepest staurolite zone rocks. This Barrovian sequence was subsequently uplifted to supracrustal levels, heterogeneously reworked at greenschist facies conditions, which was followed locally by static growth of andalusite, indicating heating to 2.5–4 kbar and 530–570 °C. The 206Pb/238U monazite age of 298.3 ± 4.1 Ma is interpreted as minimum age of peak metamorphic conditions, whereas the ages of 275.8 ± 1.7 Ma and 277.0 ± 1.1 Ma date decompression and heating at low pressure, in agreement with previous dating of Permian granitoids intruding the Rehamna massif. The prograde metamorphism occurred during thickening and associated horizontal flow in the deeper crust (S1 horizontal schistosity). The horizontally disposed metamorphic zones were subsequently uplifted by a regional scale antiform during ongoing N–S compression. The re‐heating of the massif follows late massive E–W shortening, refolding and retrograde shearing of all previous fabrics coevally with regionally important intrusions of Permian granitoids. We argue that metamorphic evolution of the Rehamna massif occurred several hundred kilometres from the convergent plate boundaries in the interior of continental Gondwanan plate. The tectonometamorphic history of the Rehamna massif is put into Palaeozoic plate tectonic perspective and Late Carboniferous reactivation of (Devonian)–Early Carboniferous basins formed during stretching of the north Gondwana margin and formation of the Palaeotethys Ocean. The inherited heat budget of these magma‐rich basins plays a role in the preferential location of this intracontinental orogen. It is shown that rapid transition from lithospheric stretching to compression is characterized by specific HT type of Barrovian metamorphism, which markedly differs from similar Barrovian sequences along Palaeozoic plate boundaries reported from Variscan Europe.  相似文献   

13.
High‐pressure basic granulites are widely distributed as enclaves and sheet‐like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P–T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low‐Ca core of growth‐zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750–870 °C and 11–14.5 kbar (M2) is defined by high‐Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770–830 °C and 8.5–10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500–650 °C and 5.5–8 kbar (M4). These results help define a sequential P–T path containing prograde, near‐isothermal decompression (ITD) and near‐isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P–T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high‐pressures (6–14.5 kbar) of the four metamorphic stages and the geometry of the P–T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper‐plate might be the tectonically overlying Khondalite series, which was subjected to medium‐ to low‐pressure (MP/LP: 7–4 kbar) granulite facies metamorphism with a clockwise P–T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90–1.85 Ga in a collisional environment created by the assembly process of the North China craton.  相似文献   

14.
Garnet‐bearing ultramafic rocks including clinopyroxenite, wehrlite and websterite locally crop out in the Higashi‐akaishi peridotite of the Besshi region in the Cretaceous Sanbagawa metamorphic belt. These rock types occur within dunite as lenses, boudins or layers with a thickness ranging from a few centimetres to 1 metre. The wide and systematic variation of bulk‐rock composition and the overall layered structure imply that the ultramafic complex originated as a cumulate sequence. Garnet and other major silicates contain rare inclusions of edenitic amphibole, chlorite and magnetite, implying equilibrium at relatively low P–T conditions during prograde metamorphism. Orthopyroxene coexisting with garnet shows bell‐shaped Al zoning with a continuous decrease of Al from the core towards the rim, consistent with rims recording peak metamorphic conditions. Estimated P–T conditions using core and rim compositions of orthopyroxene are 1.5–2.4 GPa/700–800 °C and 2.9–3.8 GPa/700–810 °C, respectively, implying a high P/T gradient (> 3.1 GPa/100 °C) during prograde metamorphism. The presence of relatively low P–T conditions at an early stage of metamorphism and the steep P/T gradient together trace a concave upwards P–T path that shows increasing P/T with higher T, similar to P–T paths reported from other UHP metamorphic terranes. These results suggest either (1) down dragging of hydrated mantle cumulate parallel to the slab–wedge interface in the subduction zone by mechanical coupling with the subducting slab or (2) ocean floor metamorphism and/or serpentinization at early stage of subduction of oceanic lithosphere and ensuing HP–UHP prograde metamorphism.  相似文献   

15.
The Mahneshan Metamorphic Complex (MMC) is one of the Precambrian terrains exposed in the northwest of Iran. The MMC underwent two main phases of deformation (D1 and D2) and at least two metamorphic events (M1 and M2). Critical metamorphic mineral assemblages in the metapelitic rocks testify to regional metamorphism under amphibolite‐facies conditions. The dominant metamorphic mineral assemblage in metapelitic rocks (M1) is muscovite, biotite I, Garnet I, staurolite, Andalusite I and sillimanite. Peak metamorphism took place at 600–620°C and ∼7 kbar, corresponding to a depth of ca. 24 km. This was followed by decompression during exhumation of the crustal rocks up to the surface. The decrease of temperature and pressure during exhumation produced retrograde metamorphic assemblages (M2). Secondary phases such as garnet II biotite II, Andalusite II constrain the temperature and pressure of M2 retrograde metamorphism to 520–560°C and 2.5–3.5 kbar, respectively. The geothermal gradient obtained for the peak of metamorphism is 33°C km−1, which indicates that peak metamorphism was of Barrovian type and occurred under medium‐pressure conditions. The MMC followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal relaxation following tectonic thickening. The bulk chemistry of the MMC metapelites shows that their protoliths were deposited at an active continental margin. Together with the presence of palaeo‐suture zones and ophiolitic rocks around the high‐grade metamorphic rocks of the MMC, these features suggest that the Iranian Precambrian basement formed by an island‐arc type cratonization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Permo-Triassic high-pressure(HP) mafic granulites, together with the Bibong retrogressed eclogite,preserved along the central western Korean Peninsula provide important insights into the Late Permian to Triassic collisional orogeny in northeast Asia. The metamorphic pressureetemperatureetime(P-T-t)paths of these rocks, however, remain poorly constrained and even overestimated, owing to outdated geothermobarometers and inaccurate isopleth techniques. Here we evaluate the metamorphic Pe T conditions of Triassic HP mafic granulites including those in Baekdong, Sinri and Daepan and the Bibong Triassic retrogressed eclogite in the Hongseong area, and the Permo-Triassic Samgot mafic granulite in the Imjingang Belt of the central western Korean Peninsula through the application of modern phase equilibria techniques. The Baekdong and Samgot mafic granulites and the Bibong retrogressed eclogite yield a range of 12.0 -16.0 kbar and 800 -900℃, representing HP granulite facies conditions. The Sinri and Daepan granulites from the Hongseong area show relatively lower grade metamorphic conditions between HP granulite and normal granulite facies, and are characterized by sub-isothermal decompression during exhumation. The similarities in the metamorphic ages and the post-collisional igneous activity from the central western Korean Peninsula indicate that the Triassic ages represent the retrograde stage of the metamorphic Pe T paths. In contrast, the Late Permian metamorphic ages, which are older than protolith ages of the post-collisional igneous rocks, correspond to the possible prograde stage of metamorphism. The P-T-t paths presented in this paper, together with the metamorphic ages and post-orogenic igneous events reported from these areas suggest trace of the subduction, accretion and exhumation history, and indicate a tectonic linkage among the northeast Asian continents during the Paleo-Tethyan Ocean closure.  相似文献   

17.
One‐dimensional thermal (1DT) modelling of an Acadian (Devonian) tectonothermal regime in southern Vermont, USA, used measured metamorphic pressures and temperatures and estimated metamorphic cooling ages based on published thermobarometric and geochronological studies to constrain thermal and tectonic input parameters. The area modelled lies within the Vermont Sequence of the Acadian orogen and includes: (i) a western domain containing garnet‐grade pre‐Silurian metasedimentary and metavolcanic rocks from the eastern flank of an Acadian composite dome structure (Rayponda–Sadawga Dome); and (ii) an eastern domain containing similar, but staurolite‐ or kyanite‐grade, rocks from the western flank of a second dome structure (Athens Dome), approximately 10 km farther east. Using reasonable input parameters based on regional geological, petrological and geochronological constraints, the thermal modelling produced plausible PT paths, and temperature–time (T t) and pressure–time (Pt) curves. Information extracted from PT t modelling includes values of maximum temperature and pressure on the PT paths, pressure at maximum temperature, predicted Ar closure ages for hornblende, muscovite and K‐feldspar, and integrated exhumation and cooling rates for segments of the cooling history. The results from thermal modelling are consistent with independently obtained pressure, temperature and Ar cooling age data on regional metamorphism in southern Vermont. Modelling results provide some important bounding limits on the physical conditions during regional metamorphism, and indicate that the pressure contemporaneous with the attainment of peak temperature was probably as much as 2.5 kbar lower than the actual maximum pressure experienced by rocks along various particle paths. In addition, differences in peak metamorphic grade (garnet‐grade versus staurolite‐grade or kyanite‐grade) and peak temperature for rocks initially loaded to similar crustal depths, differences in calculated exhumation rates, and differences in 40Ar/39Ar closure ages are likely to have been consequences of variations in the duration of isobaric heating (or ‘crustal residence periods’) and tectonic unroofing rates. Modelling results are consistent with a regional structural model that suggests west to east younging of specific Acadian deformational events, and therefore diachroneity of attainment of peak metamorphic conditions and subsequent 40Ar/39Ar closure during cooling. Modelling is consistent with the proposition that regional variations in timing and peak conditions of metamorphism are the result of the variable depths to which rocks were loaded by an eastward‐thickening thrust‐nappe pile rooted to the east (New Hampshire Sequence), as well as by diachronous structural processes within the lower plate rocks of the Vermont Sequence.  相似文献   

18.
The recent identification of multiple strike‐parallel discontinuities within the exhumed Himalayan metamorphic core has helped revise the understanding of convergence accommodation processes within the former mid‐crust exposed in the Himalaya. Whilst the significance of these discontinuities to the overall development of the mountain belt is still being investigated, their identification and characterization has become important for potential correlations across regions, and for constraining the kinematic framework of the mid‐crust. The result of new phase equilibria modelling, trace element analysis and high‐precision Lu–Hf garnet dating of the metapelites from the Likhu Khola region in east central Nepal, combined with the previously published monazite petrochronology data confirms the presence of one of such cryptic thrust‐sense tectonometamorphic discontinuities within the lower portion of the exhumed metamorphic core and provides new constraints on the P–T estimates for that region. The location of the discontinuity is marked by an abrupt change in the nature of P–T–t paths of the rocks across it. The rocks in the footwall are characterized by a prograde burial P–T path with peak metamorphic conditions of ~660°C and ~9.5 kbar likely in the mid‐to‐late Miocene, which are overlain by the hanging wall rocks, that preserve retrograde P–T paths with P–T conditions of >700°C and ~7 kbar in the early Miocene. The occurrence of this thrust‐sense structure that separates rock units with unique metamorphic histories is compatible with orogenic models that identify a spatial and temporal transition from early midcrustal deformation and metamorphism in the deeper hinterland to later deformation and metamorphism towards the shallower foreland of the orogen. Moreover, these observations are comparable with those made across other discontinuities at similar structural levels along the Himalaya, confirming their importance as important orogen‐scale structures.  相似文献   

19.
To better understand the evolution of deep‐seated crust of the Variscan orogen in the Sardinia‐Corsica region, we studied garnet‐bearing micaschists which were sampled 3 km east and 15 km northeast of Porto Vecchio, south‐eastern Corsica. After a careful investigation of the textural relations and compositions of minerals, especially of zoned garnet, a P–T path was reconstructed using contoured P–T pseudosections. U–Th–Pb dating of monazite in the micaschists was undertaken with the electron microprobe. The micaschists from both localities were formed along similar anticlockwise P–T paths. The prograde branch of these paths starts at 3 kbar close to 600°C in the P–T field of sillimanite and reaches peak conditions at 7 kbar and 600 (15 km NE of Porto Vecchio) to 630°C (3 km E of Porto Vecchio). The metamorphism at peak P–T conditions happened c. 340 Ma based on low‐Y (<0.65 wt% Y2O3) monazite. Ages of monazite with high‐Y contents (>2 wt% Y2O3), which probably have formed before garnet, scatter around 362 Ma. The retrograde branch of the P–T paths passes through 4 kbar at ~550°C. We conclude that the micaschists belong to a common metasedimentary sequence, which extends over the Porto Vecchio region and is separated from other metamorphic rock sequences in the north and the south by major tectonic boundaries. This sequence had experienced peak pressures which are lower than those determined for metamorphic rocks, such as micaschist and gneiss, from north‐eastern Sardinia. At present, we favour a continent–continent collisional scenario with the studied metasedimentary sequence buried during the collisional event as part of the upper plate. The contemporaneous high‐P metamorphic rocks from NE Sardinia were part of the upper portion of the lower plate. The addressed rocks from both plates were exhumed in an exhumation channel.  相似文献   

20.
High‐P metamorphic rocks that are formed at the onset of oceanic subduction usually record a single cycle of subduction and exhumation along counterclockwise (CCW) P–T paths. Conceptual and thermo‐mechanical models, however, predict multiple burial–exhumation cycles, but direct observations of these from natural rocks are rare. In this study, we provide a new insight into this complexity of subduction channel dynamics from a fragment of Middle‐Late Jurassic Neo‐Tethys in the Nagaland Ophiolite Complex, northeastern India. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of a medium‐grade amphibolite tectonic unit within a serpentinite mélange, we establish two overprinting metamorphic cycles (M1–M2). These cycles with CCW P–T trajectories are part of a single tectonothermal event. We relate the M1 metamorphic sequence to prograde burial and heating through greenschist and epidote blueschist facies to peak metamorphism, transitional between amphibolite and hornblende‐eclogite facies at 13.8 ± 2.6 kbar, 625 ± 45 °C (error 2σ values) and subsequent cooling and partial exhumation to greenschist facies. The M2 metamorphic cycle reflects epidote blueschist facies prograde re‐burial of the partially exhumed M1 cycle rocks to peak metamorphism at 14.4 ± 2 kbar, 540 ± 35 °C and their final exhumation to greenschist facies along a relatively cooler exhumation path. We interpret the M1 metamorphism as the first evidence for initiation of subduction of the Neo‐Tethys from the eastern segment of the Indus‐Tsangpo suture zone. Reburial and final exhumation during M2 are explained in terms of material transport in a large‐scale convective circulation system in the subduction channel as the latter evolves from a warm nascent to a cold and more mature stage of subduction. This Neo‐Tethys example suggests that multiple burial and exhumation cycles involving the first subducted oceanic crust may be more common than presently known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号