首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Geomorphology》1997,18(2):61-75
In badland areas of the Ebro Basin, in a semiarid climate, two erosion plots (257 m2; 5° slope and 128 m2; 23° slope) on exposed Tertiary clays were monitored over two years (Nov. 1991–Nov. 1993). This material is characterized by high sodium absorption ratios which lead to high soil dispersivity. The dominant erosion processes in both plots are rilling and sheet erosion. Rainfall intensity was recorded at a weather station, connected to a data-logger, sediment production for single events was collected in tanks, and ground lowering was measured every six months by erosion pins and microtopographic profile gauge techniques. Significant runoff was produced only by rainfall events above 5 mm. Another threshold at 20 mm rain was noted. For rainfalls higher than 20 mm, the 23° slope plot shows a greater runoff response than the 5° one. Rainfall events exceeding this threshold showed a higher sediment production for the steeper slope. In the relationship between precipitation and sediment concentration, an envelope curve can be drawn indicating that any rainfall event of a given amount and intensity has a maximum sediment concentration which we speculate to be a function of the runoff sediment transport capacity. Runoff response and sediment yield in the studied plots are controlled by the rainfall and soil characteristics and their seasonal variations. In both plots, the erosion pins show that erosion rates in rill areas are 25–50% higher than in the interrill areas. Sediment yield recorded by collector devices was higher than the rates measured by erosion pins. The erosion rates based on rill cross-sections by profilometers were higher than the ones recorded by collectors.  相似文献   

2.
为了明确土壤性质对坡面侵蚀方式作用机制的影响,本研究采用室内模拟降雨试验,选取黄土高原典型暴雨强度,在不同坡度条件下,对两种黄土的坡面侵蚀方式、形态特征、产流产沙过程及其相应径流流速的变化规律进行了研究。结果表明,绥德土径流量明显高于安塞土,10º、15º和20º时前者的平均径流量分别比后者高出51.1%、55.5%和63.0%,且前者更易形成细沟,使得其平均含沙量和平均产沙率分别是后者的1.14~3.59倍和2.50~8.48倍。在片蚀阶段,与绥德土相比,安塞土的含沙量较高,后者的平均含沙量是前者的1.24~1.73倍,但两种土壤的含沙量和产沙规律相同,均表现为先快速增加到最大值,然后逐渐降低到相对稳定状态,该现象证明片蚀的初期阶段主要受控于径流输沙能力,后期受径流的剥蚀能力控制。在细沟侵蚀阶段,绥德土细沟发育以沟头溯源侵蚀为主,崩塌作用频繁,该侵蚀形式不仅控制着细沟形态的总体特征,也导致含沙量和产沙率均急剧增加,该阶段平均含沙量是相应片蚀阶段的3.25~4.34倍。细沟沟口下方坡面存在明显的泥沙沉积带,表明细沟集中水流的搬运能力远高于坡面漫流,细沟侵蚀主要受径流输沙能力控制。两种土壤的径流流速均表现为坡面下部高于坡面上部,径流稳定后高于径流稳定前,总体来看,绥德土和安塞土上坡和径流稳定后的平均流速分别是下坡和径流稳定前的1.4倍、1.25倍和1.75倍、1.29倍,此外细沟侵蚀或侵蚀强度与微地貌形态之间的互馈作用对径流流速也有较大影响。  相似文献   

3.
全球视野下崩岗侵蚀地貌及其研究进展   总被引:5,自引:1,他引:4  
典型的崩岗具有“圆形露天剧场”般的沟头,发育在深厚的红色花岗岩风化壳上,通常包括集水坡面、崩壁、崩积体、沟道、洪积扇5个地貌组成部分;崩壁自上而下可分为表土层、风化红粘土层(红土层)、风化砂质红粘土层(砂土层)、风化粗碎屑层(碎屑层)。中国的崩岗与马达加斯加的lavaka属于同类地貌,两者具有地貌学上的可比性。崩岗群是劣地的表现形式之一,但与欧洲的badland有不同的侵蚀过程,也不同于意大利和巴西的两种沟谷侵蚀地貌calanchi和vocoroca。崩岗主要发育在华南和东南热带和亚热带湿润季风气候区中等偏缓的丘陵坡地上,由沟谷侵蚀发展而成,是沟谷侵蚀的高级阶段。崩岗沟道侵蚀产沙量占崩岗沟谷流域侵蚀产沙量的一半以上,其中沟道沟壁崩塌侵蚀产沙量与沟床下切侵蚀产沙量又各占崩岗沟道侵蚀产沙量的一半左右。野外人工模拟降雨试验是研究崩岗流域侵蚀、产流和产沙过程的有效手段。崩岗流域侵蚀产沙量可以通过崩岗沟谷和洪积扇地形测量加以估算。  相似文献   

4.
沙层特性对沙盖黄土坡面产流产沙变化贡献的定量分析   总被引:1,自引:0,他引:1  
沙盖黄土坡面产流产沙方式独特,侵蚀过程复杂,量化降雨过程中该类坡面产流产沙变化影响因素贡献的大小对揭示其侵蚀机理具有重要的意义。基于室内模拟降雨试验,定量分析沙层厚度(2 cm、5 cm和10 cm)和粒径组成(100%粒径≤ 0.25 mm、75%粒径≤ 0.25 mm +25%粒径> 0.25 mm、50%粒径≤ 0.25 mm+50%粒径> 0.25 mm、未处理原沙和100%粒径> 0.25 mm)在降雨过程中对产流产沙变化的影响和贡献。结果显示:沙层厚度增加能明显延长产流时间,减少总产流量,增加总产沙量,增大降雨过程中产流产沙的变异性;随沙层粒径组成变粗,初始产流时间和产沙量无明显变化规律,产流量有增大趋势。沙层厚度、粒径组成及二者交互作用对初始产流时间变化的贡献率分别为68.03%、15.77%和3.85%。沙层厚度对降雨不同时段15 min产流量和不同历时总产流量的贡献率分别在23.89%~52.22%和41.10%~48.94%之间,对相应产沙的贡献率分别在29.19%~62.01%和13.53%~30.31%之间。整体上沙层粒径组成变化对产流产沙量变化的贡献率小于沙层厚度,且无明显规律。沙层厚度和粒径组成交互作用对产流量和降雨中前期产沙量的影响显著(p < 0.05),其对产流产沙变化的贡献率分别在13.12%~26.62%和3.22%~43.12%之间,不同降雨时段变化明显。研究结果说明,沙层厚度决定沙盖黄土坡面产流产沙过程,其和沙层粒径组成对产流产沙的影响和贡献随坡面沙层的侵蚀演化而动态变化,且二者的交互作用也不容忽视。  相似文献   

5.
This paper analyses the temporal patterns of suspended sediment yield in the Araguás catchment, Central Spanish Pyrenees, a small experimental catchment with extensive badlands. The catchment has been monitored since 2004 to study weathering, erosion, and hydrological and sediment responses to understand the superficial dynamics of a badland area in a relatively humid environment. The development of badlands in the Central Spanish Pyrenees is favoured by the presence of marls and a markedly seasonal climate. The continuous observation of selected physical parameters and environmental variables enables us to establish seasonal patterns of weathering processes and identify those factors that control regolith development. Freeze–thaw cycles in winter and wetting–drying in spring–summer are the main processes involved in regolith weathering, thereby controlling slope development in combination with rainfall-related erosion processes.The 64 floods recorded during the study period (December 2005 to January 2007) were used for a hydrosedimentological analysis. The main observed features indicate that the Araguás catchment reacts to all rainfall events, resulting in steep rising and recession limbs on the hydrograph and a very short time lag. Floods show high suspended sediment concentrations and a heterogeneous temporal distribution related to seasonal variations in surface runoff production. These differences increase the degree of complexity involved in studying sediment response. Suspended sediment concentration and transport mainly depend on rainfall volume, maximum rainfall intensity, peak flow, and runoff occurrence. Finally, the similarities among the obtained hydrographs, sedigraphs, and hyetographs, in combination with the rapid response of most of the floods, suggest a large contribution of overland flow, derived mainly from infiltration excess runoff upon badland areas. Accordingly, the significant correlations obtained between rainfall intensity and sediment concentration (mainly during the dry season), which suggest a single source area for both runoff and sediment, also support the hypothesis of Hortonian hydrological response within badland areas.  相似文献   

6.
Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20− to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10–30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5–1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene.The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20–60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly increases more systematically upslope on most facets than colluvial soils. This pattern is consistent with an increase in age with height on these fault-generated facet hillslopes.The characteristic range of internal variation in soils and colluvial deposits on a given facet also varies greatly among facets with differing overall morphologies and external environments. Deep cumulic soils and thick colluvium occur consistently on steep (≥ 30°), high, and relatively undissected facets above the narrow central sections of fault segments. Much thinner and less weathered colluvium and soils overlie saprolitic bedrock at shallow depths on low, highly dissected, gently sloping (≤ 20°) facets above complex fault segment boundaries. Parametric and nonparametric analyses of variance indicate that these large-scale contrasts in facet morphology correlate primarily with a few facet subgroups related, in decreasing importance, to variations in range-front faulting, bedrock lithology, and piedmont dissection or aggradation. These factors are related to facet morphology, drainage evolution, and hillslope-soil stratigraphy in a general geomorphic model for fault-generated facets. In this model, segmentation-related changes in the geometry and/or rates of faulting most strongly affect facet size, slope gradient, the thickness of colluvium and soil development, and drainage patterns. Facets of varying heights have similar hillslope forms at the same position on the range front; these characteristic morphologies are established under prevailing tectonic and nontectonic conditions on facets as bedrock is initially exposed from beneath alluvial-covered fault scarps above a height threshold of 15–35 m.  相似文献   

7.
Sheets of eolian sediment cover many areas of the earth's surface, sand seas, dune fields, and loess sheets being the best known examples of such features. Less well known are deposits of sandy, eolian sediment forming extensive plains. An excellent example of such a region is the semi-arid Southern High Plains (northwest Texas and eastern New Mexico). The level landscape of the area was created by deposition of multiple, extensive (≈ 80,000 km2) sheets of eolian sediment (Blackwater Draw Formation) over the past 1.4+ Ma. This deposit grades from sandy (southwest) to silty and clayey (northeast) and is up to 27 m thick. Surface soils (at least 30,000 and possibly 120,000 years old) are well developed (5YR hues, agrillic horizons, 1–2m thick with prismatic structure, Stage II–III calcic horizons) and are generally Paleustolls and Paleustalfs, with some Paleargids and Haplargids. Morphologic variation is due mainly to textural variation of the eolian parent material, although locally thickness of the parent material and wind erosion and cumulization are important factors, and locally slight variation in effective precipitation may be significant. The Blackwater Draw Formation contains as many as six well-developed buried soils, each formed in individual layers of eolian sediment, similar to or more strongly expressed (2.5YR hues, higher illuvial clay content) than the regional surface soils. The presence of the buried soils indicates that sedimentation was episodic and separated by long periods of relative landscape stability. Eolian processes also appear to have been important during the periods of stability and pedoenesis by providing clayey, calcareous dust that was added to the soil, promoting formation of the argillic and calcic horizons. The sedimentologic and pedologic uniformity of the deposit suggests that the regional environment has not varied significantly during the Quaternary except for periods of increased sedimentation or wind deflation. Underlying the Blackwater Draw Formation is an Upper Tertiary deposit (up to 36 m thick) of eolian sand, silt, and clay (Ogallala Formation). This deposit contains buried soils very similar to those in the Blackwater Draw Formation, suggesting that the geomorphic processes that created the Quaternary landscape of the Southern High Plains began to operate in the late Tertiary, perhaps as much as 11 million years ago.  相似文献   

8.
ABSTRACT. Runoff generation and soil erosion were investigated at the Guadalperalón experimental watershed (western Spain), within the land‐use system known as dehesa, or open, managed evergreen forests. Season and type of surface were found to control runoff and soil‐loss rates. Five soil units were selected as representative of surface types found in the study area: hillslope grass, bottom grass, tree cover, sheep trails, and shrub cover. Measurements were made in various conditions with simulated rainfall to gain an idea of the annual variation in runoff and soil loss. Important seasonal differences were noted due to surface cover and moisture content of soil, but erosion rates were determined primarily by runoff. Surfaces covered with grass and shrubs always showed less erosion; surfaces covered with holm oaks showed higher runoff rates, due to the hydrophobic character of the soils. Concentrations of runoff sediment during the simulations confirmed that erosion rates at the study site depended directly on the sediment available on the soil surface.  相似文献   

9.
Accelerated soil erosion is ubiquitous on human-modified hillslopes. A variety of erosion control products have been developed to reduce on-site soil resource degradation, and off-site transport of sediment and sediment-associated contaminants to receiving water bodies. However, limited quantitative data are available to assess erosion reduction effectiveness, and to establish the salient properties of the erosion control products. A replicated field-based rainfall simulation study was conducted to compare the runoff and erosion effectiveness of three coir (coconut) fiber rolled erosion control systems (RECSs) with a bare (control) treatment. Detailed temporal measurements of runoff and sediment transport were made during two phases of each experiment: (1) a 110-min application of rainfall via a rainfall simulator at 35 mm h−1 after runoff initiation and (2) a 30-min period, at 3 times the flow rate of phase 1, applied via an overland flow generator. All coir treatments enhanced infiltration, delayed time to runoff generation, reduced intensity of rill incision, and reduced sediment output compared to bare treatments. More importantly, statistically significant differences were observed between coir RECSs of different architecture. For the two open weave coir systems tested, the most effective design had a higher mass per area, and less open space between the regularly aligned grid of fibers. The random fiber coir architecture was the most effective, having significantly lower runoff sediment concentrations, lower sediment yields, and a lower frequency of rill initiation. The differences in system architecture are examined in light of fundamental controls on runoff and erosion processes.  相似文献   

10.
黄土丘陵沟壑区极端降雨事件及其对径流泥沙的影响   总被引:5,自引:1,他引:5  
半干旱黄土丘陵沟壑区是我国水土流失的重灾区。在全球气候变化的大背景下,极端降雨事件时有发生,加重了区域水土流失防治的难度。因此,科学界定极端降雨事件、进而探讨其发生规律及其对径流侵蚀的影响尤为重要。通过整理定西市安家沟流域(35°35′N,104°39′E)17年的降水和径流侵蚀数据进行统计分析。以降雨量和最大30min雨强为指标,采用世界气象组织的标准划分了极端降雨事件。结果发现:(1)研究区内极端次降雨事件的雨量和雨强的临界值分别为40.11mm和0.55mm/min,次降雨量的多年平均值为18.87mm。17年间共发生12次极端事件,5月、7月、8月份的发生概率分别为16.67%、50%和33.33%。因此最佳防治时间段为7、8月份。(2)聚类分析表明极端降雨事件可分为三类:降雨量和雨强都大于临界值,占25%;降雨量大于临界值,而雨强小于临界值,占41.67%;雨强大于临界值,降雨量大于多年平均值而小于临界值,占33.33%。(3)在极端降雨事件作用下,径流系数和侵蚀模数要比对应的多年平均值高。总体而言,降雨量和雨强都很高的极端事件的破坏性最强,但高历时低雨强的极端事件所产生的破坏也不容低估。(4)沙棘林在生长演替的过程中显著增强了抵御土壤侵蚀的能力,对极端降雨事件有很好的防治作用。抵御极端降雨最弱的是坡耕地,主要是由于受到坡度大、植被覆盖率低以及人为干扰等因素的影响。  相似文献   

11.
Medium-term evolution of a gully developed in a loess-derived soil   总被引:4,自引:0,他引:4  
Field surveys in the Belgian loess belt revealed the presence in many forested areas of large, permanent gully systems, most of which are currently inactive. In cultivated areas, such gullies can only be observed in cross-sectional soil profiles through hollows, as virtually all such large gullies are currently infilled with colluvium. Little is known about the spatial distribution, initiation and temporal evolution of these large, permanent gully systems on loess-derived soils. Therefore, the medium-term evolution of a gully initiated in a cultivated area on loess-derived soils southwest of Leuven (Belgium) in May–June 1986, was studied over 13 years. Two intense rainfall events created this (ephemeral) gully, which was not erased by subsequent tillage. Between June 1986 and the December 1999, eight field surveys were conducted to measure gully dimensions. During two surveys, topographic indices (e.g., slope and drainage area) were also measured. Daily rainfall for the measuring period were obtained from a rainfall station located some 10 km southwest of the gully. Analysis of rainfall data showed that no extreme rainfall event was required to initiate such large (permanent) gullies, as observed in forested areas and through cross-sectional profiles in cultivated fields in the Belgian loess belt. Return periods of the event that caused the gully varied between <1 year and 25 years, depending on the assumptions used for defining event rain intensity. Once established, length, surface area and volume of the studied gully evolved with time, cumulative rainfall or cumulative runoff, following a negative exponential relation. This accords with observations reported for gullies in Australia and the USA. This study shows that a degressive increase of gully extension, can be largely explained by the evolution of a “slope–drainage area” factor (S×A, which is proportional to stream power) with time. While gully length and gully surface area asymptotically evolve towards a final value, gully volume decreased at a given point in time. From this, it is inferred that sediment deposition will potentially infill the gully to such an extent that the farmer can drive across it. From this moment on, the combined effect of water and tillage erosion in the gully drainage area, will lead towards rapid infilling. This expected evolution of a gully in cultivated fields accords with observations of large infilled gully systems in cultivated areas in eastern Belgium. The permanent gullies observed under forest are attributed to the fact that after severe gully erosion, this area was reforested or abandoned. Therefore, the sediment source was cut off and the gully was not filled in by sediment deposition.  相似文献   

12.
坡地土壤氮素与降雨、径流的相互作用机理及模型   总被引:58,自引:0,他引:58  
坡地土壤氮素径流损失表现为两种形式 ,溶解于径流中的矿质氮随径流液流失 ,吸附于泥沙颗粒表面以无机态和以有机质形式存在的氮素。坡地土壤氮素流失过程实际上是表层土壤氮素与降雨、径流相互作用的过程 ,土壤氮素流失的多少主要受相互作用的限制。从分析土壤与降雨、径流相互作用入手 ,分析了土壤氮素与降雨、径流相互作用过程及机理 ,并对相互作用模型进行探讨。  相似文献   

13.
Soil erosion has become a serious environmental problem worldwide, and slope land is the main source of soil erosion. As a primary cover of slope land, crops have an important influence on the occurrence and development of runoff and soil erosion on slope land. This paper reviews the current understanding of runoff and soil erosion on slope cropland. Crops mainly impact splash detachment, slope runoff, and sediment yield. In this review paper, the effects of crop growth and rainfall on the splash detachment rate and the spatial distribution of splash detachment are summarized. Crop growth has a significant impact on runoff and sediment yield. Rainfall intensity and slope gradient can influence the level of erosive energy that causes soil erosion. Furthermore, other factors such as antecedent soil water content, soil properties, soil surface physical crust, and soil surface roughness can affect soil anti-erodibility. The varying effects of different crops and with different influence mechanisms on runoff and soil erosion, as well as changes in their ability to influence erosion under different external conditions should all remain focal points of future research. The effect of crop vegetation on runoff and soil erosion on slope land is a very important factor in understanding large-scale soil erosion systems, and in-depth study of this topic is highly significant for both theory and practice.  相似文献   

14.
基于地块汇流网络的小流域水沙运移模拟方法研究   总被引:4,自引:0,他引:4  
全流域逐地块水土流失计算,是目前水土保持定量评价的重要手段,其实现过程既需要有考虑地貌因子和上下游关系的土壤侵蚀模型,也需要建立全流域地块汇流网络,并与侵蚀模型有机连接。本文针对黄土高原特殊的地理条件和水土流失规律,对传统的基于栅格的小流域汇流技术进行了改进,考虑地块间上下游汇流关系,建立了基于地块的水沙汇流网络模型,模拟水沙在流域复杂下垫面的汇流过程,提取出流域各地块间的水沙汇流网络,并计算出3个重要参数:流域地块间水沙汇流的顺序、流域地块间水沙汇流数目的空间分配、水沙流经各地块的坡长。将土壤侵蚀模型按地貌部位与特征分为坡面模型、沟坡模型和沟道输移模型,与地块汇流网络有机集成,实现了水沙运移的全流域按地块沿程计算。  相似文献   

15.
北京地区农田氮素养分随地表径流流失机理   总被引:74,自引:1,他引:74  
田间模拟降雨径流试验研究了北京地区农田暴雨径流氮素流失与雨强、作物覆盖、施肥因子的关系,以及侵蚀泥沙的粒径分布特征和对氮的富集作用。结果表明:(1)降雨强度越大,地表径流模数和侵蚀模数增大,氮素流失越多;作物覆盖有效地减少地表水土和颗粒态氮流失;(2)颗粒态氮浓度占径流全氮浓度的88.9%(施尿素)和98%以上(未施氮肥),是农田径流氮损失的主要形态;(3)施用化学氮肥增大了农田径流溶解态氮浓度,化学氮肥容易通过地表径流流失;(4)侵蚀泥沙的团聚体组成和原来土壤有很大差异,粒径<0.25mm的团聚体,尤其是含氮量较高的<0.045mm团聚体的富集是侵蚀泥沙富集氮的主要原因。减少地表径流和土壤侵蚀,降低表土速效氮含量是减少农田地表径流氮养分流失的关键。  相似文献   

16.
唐辉  李占斌  李鹏  王添 《中国沙漠》2016,36(6):1708-1712
坡面土壤侵蚀过程不仅可以通过坡面的产流产沙过程反映,还可以通过降雨过程中坡面微地形变化特征来反映。对9°、12°、15°、20°、25°坡度下面积较小坡面模拟降雨,获取降雨过程中径流泥沙数据及降雨前后坡面微地形变化数据。结果显示:(1)初始产流时间随着坡度的增加先增加后减小,且初始产流时间较长;(2)15°、20°时的产流率不稳定,18 min后产沙率规则性波动起伏;(3)随着坡度的增大,降雨过程后坡面比表面积值随着坡度的增大而增大,坡面的高程变异系数都有所增大。  相似文献   

17.
Climate, lithology, soil and especially, intense land use/cover changes, make SE Spain very vulnerable to runoff generation and water erosion leading to loss of nutrients and organic matter and to infrequent but devastating floods, reservoir siltation and mass failures. This susceptibility has led to heavy economic investment and research efforts since the 1980s, making this region a worldwide reference for understanding the hydrology and geomorphology of semiarid ecosystems. Runoff and soil erosion have been intensively studied throughout the last decades in various natural ecosystems as well as in abandoned farmlands. Research has considered a wide range of methods and spatial and temporal scales. This paper reviews the methods and data describing runoff generation and water erosion, synthesising the key processes involved, rates, thresholds and controlling factors from a scale-dependent perspective. It also identifies the major gaps in current knowledge to provide recommendations for further research towards solutions that reduce the negative impacts of erosion. Research in SE Spain has contributed significantly to a better understanding of the effect of spatial and temporal scale on runoff and sediment yield measurements, and highlighted the important role of distinct erosion and sediment transport processes, hydrologic connectivity, spatial and temporal patterns of rainfall, the occurrence of extreme events and the impacts of land use changes. The most effective ways and challenges to predict runoff, soil erosion and sediment yield at the catchment scale are also discussed.  相似文献   

18.
We have monitored initiation conditions for six debris flows between May 2004 and July 2006 in a 0.3 km2 drainage basin at Chalk Cliffs; a band of hydrothermally-altered quartz monzonite in central Colorado. Debris flows were initiated by water runoff from colluvium and bedrock that entrained sediment from rills and channels with slopes ranging from about 14° to 45°. The availability of channel material is essentially unlimited because of thick channel fill and refilling following debris flows by rock fall and dry ravel processes. Rainfall exceeding I = 6.61(D)− 0.77, where I is rainfall intensity (mm/h), and D is duration (h), was required for the initiation of debris flows in the drainage basin. The approximate minimum runoff discharge from the surface of bedrock required to initiate debris flows in the channels was 0.15 m3/s. Colluvium in the basin was unsaturated immediately prior to (antecedent) and during debris flows. Antecedent, volumetric moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 4–9%, and 4–7%, respectively. During debris flows, peak moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 10–20%, and 4–12%, respectively. Channel sediment at a depth of 45 cm was unsaturated before and during debris flows; antecedent moisture ranged from 20–22%, and peak moisture ranged from 24–38%. Although we have no measurements from shallow rill or channel sediment, we infer that it was unsaturated before debris flows, and saturated by surface-water runoff during debris flows.Our results allow us to make the following general statements with regard to debris flows generated by runoff in semi-arid to arid mountainous regions: 1) high antecedent moisture levels in hillslope and channel sediment are not required for the initiation of debris flows by runoff, 2) locations of entrainment of sediment by successive runoff events can vary within a basin as a function of variations in the thickness of existing channel fill and the rate of replenishment of channel fill by rock fall and dry ravel processes following debris flows, and 3) rainfall and simulated surface-water discharge thresholds can be useful in understanding and predicting debris flows generated by runoff and sediment entrainment.  相似文献   

19.
坡耕地侵蚀过程与土壤理化特性演变   总被引:9,自引:0,他引:9  
黄少燕  查轩 《山地学报》2002,20(3):290-295
坡耕地水土流失问题问题是制约生态农业建设与可持续发展的重要因素,探讨坡耕地土壤侵蚀过程和土壤退化机制是解决问题的关键。基于这些问题,本文应用人工模拟降雨试验方法,研究了坡耕地壤侵蚀发生发展过程,以及侵蚀过程中土壤物理化学特性的演变规律;明确了不同中下坡面单位时间产沙三个过程特征;揭示了泥沙中不同粒级颗粒组成、团聚体和营养元素迁移规律及导致土壤退化加剧的原因;提出了防止坡耕地土壤侵蚀的方法。  相似文献   

20.
Abstract In the Latnjavagge drainage basin (68°21′N, 18°29′E), an arctic‐oceanic periglacial environment in northernmost Swedish Lapland, the fluvial sediment transport and the characteristics and importance of high‐magnitude/low‐frequency fluvial events generated by intense snowmelt or heavy rainfall have been investigated and compared with snowmelt‐ and rainfall‐induced discharge peaks in the Levinson‐Lessing Lake basin (Krasnaya river system) on the Taimyr Peninsula, an arctic periglacial environment in northern Siberia (74°32′N, 98°35′E). In Latnjavagge (9 km2) the intensity of fluvial sediment transport is very low. Most of the total annual sediment load is transported in a few days during snowmelt generated runoff peaks. Due to the continuous and very stable vegetation covering most areas below 1300 m a.s.l. in the Latnjavagge catchment, larger rainfall events are of limited importance for sediment transport in this environment. Compared to that, in the c. 40 times larger Krasnaya riversystem rainfall‐generated runoff peaks cause significant sediment transport. The main sediment sources in the Latnjavagge drainage basin are permanent ice patches, channel debris pavements mobilized during peak discharges and exposing fines, and material mobilized by slush‐flows. In the Krasnaya river system river bank erosion is the main sediment source. In both periglacial environments more than 90% of the annual sediment yield is transported during runoff peaks. The results from both arctic periglacial environments underline the high importance of high‐magnitude/low‐frequency fluvial events for the total fluvial sediment budgets of periglacial fluvial systems. Restricted sediment availability is in both arctic environments the major controlling factor for this behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号