首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Compositional variation of phlogopitic micas in upper mantle peridotites is reviewed. Phlogopitic micas in garnet peridotites are systematically lower in Al (or eastonite component) than those in spinel peridotites. The core of phlogopite megacryst and phenocryst of kimberlite is always lower in Al than the rim. It is apparent that Al/(Al + Si) ratio or eastonite component in phlogopitic micas in ultramafic rocks is controlled by the equilibrium pressure and temperature. In the upper mantle peridotites containing garnet or spinel, the Al/(Al + Si) ratio of phlogopitic mica decreases with increasing pressure at constant temperature. Phlogopitic mica is a potential thermo-barometer in both garnet- and spinel-peridotite facies.  相似文献   

2.
Garnet peridotites occur in quartzofeldspathic gneisses in the Northern Qaidam Mountains, western China. They are rich in Mg and Cr, with mineral compositions similar to those in mantle peridotites found in other orogenic belts and as xenoliths in kimberlite. Garnet‐bearing lherzolites interlayered with dunite display oriented ilmenite and chromite lamellae in olivine and pyroxene lamellae in garnet that have been interpreted to indicate pressures in excess of 6 GPa. However, some garnet porphyroblasts include hornblende, chlorite and spinel + orthopyroxene symplectite after garnet; some clinopyroxene porphyroblasts include abundant actinolite/edenite, calcite and lizardite in the lherzolite; some olivine porphyroblasts (Fo92) include an earlier generation Mg‐rich olivine (Fo95–99), F‐rich clinohumite, pyroxene, chromite, anthophyllite/cummingtonite, Cl‐rich lizardite, carbonates and a new type of brittle mica, here termed ‘Ca‐phlogopite’, in the associated dunite. The pyrope content of garnet increases from core to rim, reaching the pyrope content (72 mol.%) of garnet typically found in the xenoliths in kimberlite. The simplest interpretation of these observations is that the rock association was formerly mantle peridotite emplaced into the oceanic crust that was subjected to serpentinization by seawater‐derived fluids near the sea floor. Dehydration during subduction to 3.0–3.5 GPa and 700 °C transformed these serpentinites into garnet lherzolite and dunite, depending on their Al and Ca contents. Pseudosection modelling using thermocalc shows that dehydration of the serpentinites is progressive, and involved three stages for Al‐rich and two stages for Al‐poor serpentinites, corresponding to the breakdown of the key hydrous minerals. Static burial and exhumation make olivine a pressure vessel for the pre‐subduction mineral inclusions during ultrahigh‐pressure (UHP) metamorphism. The time span of the UHP event is constrained by the clear interface between the two generations of olivine to be very short, implying rapid subduction and exhumation.  相似文献   

3.
山东临朐山旺新生代玄武岩中超镁铁岩包体的研究   总被引:5,自引:0,他引:5  
山旺新生代玄武岩中的超镁铁质包体分为五类:尖晶石纯橄榄岩、尖晶石二辉橄榄岩、尖晶石方辉橄榄岩、尖晶石石榴石二辉岩和石榴石二辉橄榄岩。对它们的地质学,岩相学、岩石化学,造岩矿物的化学成分,稀土配分模式及热力学计算的研究表明,前三种岩石属原始地幔岩,后二种是地幔中岩浆作用的产物。  相似文献   

4.
西藏雅鲁藏布江缝合带东段泽当地幔橄榄岩特征及其意义   总被引:1,自引:1,他引:0  
泽当岩体位于雅鲁藏布江缝合带东段,主要由地幔橄榄岩、辉长辉绿岩和基性火山岩等组成。地幔橄榄岩主要为方辉橄榄岩和二辉橄榄岩,有少量透镜状纯橄岩。地幔橄榄岩经历了强烈的塑性变形作用。地幔橄榄岩中橄榄石的Fo值为89.6~91.8,属镁橄榄石;斜方辉石为顽火辉石,En 87.8~90.3;单斜辉石En 44.1~50.0,主要为顽透辉石和透辉石。铬尖晶石的Cr#值(=100×Cr/(Cr+Al))为17.0~93.6,其中,二辉橄榄岩和方辉橄榄岩中的铬尖晶石为富铝型尖晶石,纯橄岩中的铬尖晶石Cr#最高,为富铬型尖晶石。地幔橄榄岩的部分熔融程度为17%~34%,表明泽当地幔橄榄岩可能经历了多阶段的过程。亏损的主量元素组成和低于原始地幔的稀土元素含量(0.15×10-6~0.61×10-6)指示泽当地幔橄榄岩为经历过部分熔融和熔体抽取的亏损残余地幔岩石。REE配分型式为中稀土亏损的"V"型或"U"型,原始地幔标准化元素比值(La/Sm)N为0.5~8.0,表明泽当地幔橄榄岩经历过交代作用。矿物化学与地球化学数据表明泽当地幔橄榄岩形成于MOR环境,后受到SSZ环境的改造。  相似文献   

5.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   

6.
岗上超镁铁质岩主要由纯橄岩和石榴橄榄岩组成,主要组成矿物有橄榄石、铬尖晶石、石榴子石、单斜辉石和斜方辉石等。铬尖晶石的Cr#[Cr/(Cr+Mg)×100]从51到89变化,铬尖晶石矿物表现为4期次演化的特点,反映了从岩浆期向榴辉岩相、角闪岩相和绿片岩相演化特征。随着超镁铁质岩的演化,铬尖晶石中Cr#不断增大(51增大到89),而铬尖晶石Mg#[Mg×100/(Mg+Fe2+)]不断减少,氧逸度不断增加。在绿片岩相—绿片角闪岩相退变质过程中,铬尖晶石中Cr、Mg和Al减少,Fe相对增加,产生富Cr尖晶石变质作用样式。晚期剪切变形等次生变化有利于富铬铬尖晶石矿物的形成和铬尖晶石的富集。同时,角闪岩相和绿片岩相变质作用使铬尖晶石富集呈现容易开采的条带状,降低了铬尖晶石与其他硅酸盐矿物的结合强度,降低了开采强度和成本,使原本不易于开采的铬铁矿矿体变得可以开采。这些意味着铬铁矿矿体展布要结合后期变质作用进行综合分析。  相似文献   

7.
论述了大陆俯冲碰撞带中地幔橄榄岩的基本特征和成岩类型,并重点讨论柴北缘超高压变质带中不同性质的橄榄岩及其成因。根据岩石学特征,我们确定柴北缘超高压带中发育有两种类型的橄榄岩:(1)石榴橄榄岩,岩石类型包括石榴二辉橄榄岩、石榴方辉橄榄岩、纯橄岩和石榴辉石岩,是大陆型俯冲带的标志性岩石。金刚石包裹体、石榴石和橄榄石的出溶结构、温压计算等均反映其来源深度大于200km。地球化学特征表明该橄榄岩的原岩是岛弧环境下高镁岩浆在地幔环境下堆晶的产物。(2)大洋蛇绿岩型地幔橄榄岩,与变质的堆晶杂岩(包括石榴辉石岩、蓝晶石榴辉岩)和具有大洋玄武岩特征的榴辉岩构成典型的蛇绿岩剖面,代表大洋岩石圈残片。这两类橄榄岩的确定对了解柴北缘超高压变质带的性质和构造演化过程有重要意义。  相似文献   

8.
The main hole (MH), and pre-pilot holes PP1, and PP3 of the Chinese Continental Scientific Drilling Project (CCSD) penetrated three different garnet peridotite bodies in the Sulu ultrahigh pressure (UHP) metamorphic belt, which are 80 m, 120 m, and 430 m thick, respectively. The bodies occur as tectonic blocks hosted in eclogite (MH peridotite) and gneisses (PP1 and PP3 peridotites). The peridotites in the MH are garnet wehrlites, whose protoliths were ultramafic cumulates based on olivine compositions (Fo79-89) and other geochemical features. Zoned garnet and omphacite (with 4-5 wt.% Na2O) are typical metamorphic minerals in these rocks, and, along with P-T estimates based on mineral pairs, suggest that the rocks have undergone UHP metamorphism. SHRIMP U-Pb isotope dating of zircon from the garnet wehrlite yielded a Paleozoic protolith age (ca. 346-461 Ma), and a Mesozoic UHP metamorphic age (ca. 220-240 Ma). The peridotites in PP1 consist of interlayered garnet (Grt)-bearing and garnet-free (GF) peridotite. Both types of peridotite have depleted mantle compositions (Mg# = 90-92) and they display transitional geochemical features. The intercalated layers probably reflect variations in partial melting rather than pressure variations during metamorphism, and the garnets may have been formed by exsolution from orthopyroxene during exhumation. These peridotites were probably part of the mantle wedge above the subduction zone that produced the UHP metamorphism and thus belonged to the North China Block before its tectonic emplacement. The exhumation of the subducted Yangtze Block brought these mantle fragments to shallow crustal levels. The ultramafic rocks in PP3 are dominantly dunite with minor garnet dunite. Their high Mg# (92-93) and relatively uniform chemical compositions indicate that they are part of a depleted mantle sequence. The presence of garnet replacing spinel and enclosing pre-metamorphic minerals such as olivine, clinopyroxene and spinel suggests that these rocks have undergone progressive metamorphism. SHRIMP U-Pb isotope dating of zircon from these rocks yielded two age groups: 726 ± 56 Ma for relic magmatic zircon grains and 240 ± 2.7 Ma for the newly formed metamorphic zircon. The older group is similar in age to granitic intrusions within the Dabie-Sulu belt, suggesting that the PP3 garnet peridotite may record the early emplacement of the peridotite into the crust. The younger dates coincide with the age of UHP metamorphism during continent-continent collision between the Yangtze and North China Blocks, suggesting that these peridotites were subducted to depths equivalent to the coesite facies and later exhumed. Thus, the garnet peridotites in the CCSD cores include both ultramafic rocks that existed originally in the subducted plate and rocks from the mantle wedge above the subducted plate, i.e., part of the North China Block.  相似文献   

9.
Exposed, subduction-related magmatic arcs commonly include sections of ultramafic plutonic rocks that are composed of dunite, wehrlite, and pyroxenite. In this experimental study we examined the effects of variable H2O concentration on the phase proportions and compositions of igneous pyroxenites and related ultramafic plutonic rocks. Igneous crystallization experiments simulated natural, arc magma compositions at 1.2 GPa, corresponding to conditions of the arc lower crust. Increasing H2O concentration in the liquid changes the crystallization sequence. Low H2O concentration in the liquid stabilizes plagioclase earlier than garnet and amphibole while derivative liquids remain quartz normative. Higher H2O contents (>3%) suppress plagioclase and lead to crystallization of amphibole and garnet thereby producing derivative corundum normative andesite liquids. The experiments show that alumina in the liquid correlates positively with Al in pyroxene, as long as no major aluminous phase crystallizes. Extrapolation of this correlation to natural pyroxenites in the Talkeetna and Kohistan arc sections indicates that clinopyroxenes with low Ca-Tschermaks component represent near-liquidus phases of primitive, Si-rich hydrous magmas. Density calculations on the residual solid assemblages indicate that ultramafic plutonic rocks are always denser than upper mantle rocks in the order of 0.05 to 0.20 g/cm3. The combination of high pressure and high H2O concentration in the liquid suppresses plagioclase crystallization, so that ultramafic plutonic rocks form over a significant proportion of the crystallization interval (up to 50% crystallization of ultramafic rocks from initial, mantle-derived liquids). This suggests that in subduction-related magmatic arcs the seismic Moho might be shallower than the petrologic crust/mantle transition. It is therefore possible that calculations based on seismic data have overestimated the normative plagioclase content (e.g., SiO2, Al2O3) of igneous crust in arcs.  相似文献   

10.
The Dabie-Sulu ultrahigh-pressure (UHP) terrane is the largest in the world. Mafic-ultramafic rocks occur as ubiquitous minor components in it, and preserve UHP index minerals such as coesite and microdiamond. Eclogites and garnet peridotites together with their country rocks including quartzofeldspathic, pelitic, psammatic, and carbonate rocks were subjected to coeval UHP meta-morphism during the Triassic collision between the Sino-Korean and Yangtze cratons. This review summarizes petrological and geochemical characteristics of eclogites, garnet peridotites, and UHP metasediments from published data and ongoing research in the Dabie-Sulu belt of east-central China.

Parageneses of minerals from coesite-bearing eclogites encased in gneiss, garnet peridotite, and marble delineate clockwise P-T paths characterized by nearly isothermal decompression. Many eclogites have been overprinted by Barrovian-zone amphibolite- to granulite-facies assemblages, whereas others preserve primary igneous minerals and textures in the cores of coesite-bearing eclogitic blocks. In addition, eclogites contain UHP hydrous and carbonate phases including talc, epidote, zoisite, magnesite, and dolomite; these together with Ti-clinohumite, phlogopite, amphibole, chlorite, and possible talc in garnet peridotites and OH-topaz in kyanite quartzites document the role of hydrous mineral transport to the deep mantle in fluid-deficient UHP metamorphic regions. Both crustal- and mantle-derived garnet peridotites from the Dabie-Sulu region were recrystallized within the diamond stability field, with the Earth's lowest recorded geothermal gradient. <5°C/km, suggesting that UHP metamorphic recrystallization took place in a previously unrecognized, forbidden P-T region.

Geochemical and isotopic data indicate that Dabie-Sulu mafic-ultramafic rocks have diverse origins; their compositions in some cases have been complicated by metamorphic recrystallization, crustal contamination, and fluid metasomatism. Nevertheless, REE geochemical and Nd isotope data clearly indicate that they have “continental” affinities and cannot represent a subducted Tethyan oceanic slab. Garnet peridotites and their enclosing eclogites display variable isotopic compositions; mantle-derived fragments preserve a mantle signature, whereas crust-hosted mafic-ultramafics display distinct crustal contamination and metasomatism. Among the many outstanding projects remaining to be investigated, geochemical and isotopic constraints of mantle-derived garnet peridotites and eclogites should provide an additional window to our understanding of mantle heterogeneity, metasomatism, slab/mantle interactions, and lithospheric evolution of the Sino-Korean craton.  相似文献   

11.
大别山北部饶拔寨超镁铁岩体微量元素地球化学   总被引:3,自引:4,他引:3  
本文报道了饶拔寨超镁铁岩体的5个钻孔15个岩心样品的主量元素和微量元素成分。该岩体由上、下两部分构成。岩性以方辉橄榄岩为主,纯橄榄岩和二辉橄榄岩次之。主量元素成分表明岩体由饱满地幔经过不同程度部分熔融,形成了亏损程度不同的大陆岩石圈地幔。总体上下部岩体较上部亏损程度大。原始地幔标准化REE等不相容微量元素丰度模式表明岩体在熔融作用后又经过了地幔交代作用,形成不同程度LREE和LILE的富集。样品中有角闪石和金云母等含水矿物,表明有实性地幔交代作用。对比LREE与LILE的富集特征,表明可能有两类地幔交代作用,有两种不同性质的交代介质,LREE和Sr等的富集可能与硅酸盐熔体有关,而Rb、Ba、K等的富集可能与俯冲带流体活动有关。总体上下部岩体的交代作用较上部岩体的强。  相似文献   

12.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

13.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

14.
The author describes a new occurrence of garnet peridotite and garnet pyroxenite interlayered in the biotite-sillimanite-garnet gneisses at the top of the granulitic serie of the Monts du Lyonnais (Massif Central français). Its dimensions are rather significant for a crustal gisement (500×100 m). It is only composed of forsterite, enstatite, chromiferous diopside, pyrope and spinel peridotites with their products of retrograde transformations as kelyphites, amphiboles, chlorites, lizardite, ores, etc. The petrographic studies show the heterogeneity of the massif and the anteriority of the red spinel upon the garnet which always forms a corona around the spinel. The peridotites are intermingled with numerous streched and dislocated layers of garnet websterites with rare centimetric levels. These pyroxenites would be derived of particular magmatic processes (partial anatectic melting followed by cristallisation) developped from an upper mantle level in a primary pyrolitic lherzolitic (s. l) or garnet peridotitic material. The garnet peridotite of “Le Bois des Feuilles” would be, in fact, a “secondary garnet lherzolite” derived: - either from a spinel lherzolite intermingled with garnet websterite layers and their “dunitic” remnants, to form a “pseudo-garnet lherzolite” like this of Beni Bouchera described by Kornprobst; - or from a spinel lherzolite associated with garnet websterites and submitted temporarily, at the time of its diapiric rising movement from the mantle towards the crust to the conditions of the spinel garnet lherzolite facies. The plastic deformations and intense laminations form blastomylonites of mixed rocks recristallised ultimately under granulitic facies conditions. These rocks are, pro parte, not very different from the other crustal garnet peridotites, in spite of the frequency of the spinel inclusions in garnet. In corollary, it seems that numerous crustal garnet peridotites would have the same origin.  相似文献   

15.
Dunites, peridotites, olivine and spinel pyroxenites, and metagabbroids have been described in the tectonic blocks of the Pekul’ney complex of the central Chukchi Peninsula together with garnet-hornblende-clinopyroxene and zoisite (clinozoisite)-garnet-hornblende rocks, which are indicative of high-pressure complexes. However, the interpretations of previous researchers on the composition, structure, setting, and processes of formation of this rock association are highly controversial. The petrographic and mineralogical results reported in this paper indicate that the blocks of the complex host bodies of cumulate ultramafics among metamorphic rocks. These relationships were supported by the finding of xenoliths and xenocrysts of metamorphic rocks in the ultramafics. The metamorphic country rocks are lower crustal amphibolites and schists with peak metamorphic parameters corresponding to the high-pressure portion of the epidoteamphibolite facies (610–680°C and 9–14 kbar). All the varieties of ultramafic rocks studied in the blocks of the complex are assigned to a single cumulate series (from dunite to clinozoisite-garnet hornblendite), and the compositions of their primary minerals show regular correlations similar to crystallization differentiation trends. Specific features of the ultramafics of the Pekul’ney complex are the early crystallization of hornblende (which is present already in peridotites), wide range of garnet crystallization (associating with clinopyroxene, ceylonite, and hornblende), presence of magmatic clinozoisite in the most evolved assemblages (with garnet, hornblende, and clinopyroxene), and absence of evidence for plagioclase crystallization. Clinopyroxene from the most evolved ultramafic rocks contains more than 15 wt % Al2O3. The classification of the rocks of the complex provides a basis for the interpretation of geological relations between them and the elucidation of the characteristics of the internal structure of the blocks of the complex and bodies of cumulate ultramafic rocks in them.  相似文献   

16.
宋衍茹  叶凯  续海金 《岩石学报》2009,25(1):147-158
苏鲁超高压变质地体中发现了大量包裹在超高压(UHP)变质片麻岩和混合岩中的造山带石榴橄榄岩。根据它们的野外产出特征和全岩地球化学成分,其中一部分石榴橄榄岩的原岩来自于亏损地幔,后来被卷入俯冲陆壳并经受过俯冲陆壳产生的熔/流体的交代。但是,对这些岩石早期的亏损过程尚缺乏清晰的认识。本文报道了东海芝麻坊石榴子石二辉橄榄岩早期变质演化的新证据。根据详细的变质反应结构观察和矿物成分研究,芝麻坊石榴子石二辉橄榄岩在经历高压低温俯冲带型超高压变质之前经历了至少两期变质演化。其原岩矿物组合由石榴子石变斑晶的高Ca-Cr核部及其中包裹的高Mg单斜辉石、高Al-Cr斜方辉石和高Mg-Ni橄榄石所记录;指示芝麻坊石榴子石二辉橄榄岩的原岩为高温-高压的富集石榴子石二辉橄榄岩。第二期矿物组合为包裹在低Cr变斑晶石榴子石幔部和细粒新生石榴子石核部的大量富Al铬铁矿和高Mg低Ni橄榄石以及少量高Mg斜方辉石。该期组合未发现单斜辉石,表明岩石随后被转变为高温低压的难熔尖晶石方辉橄榄岩或尖晶石纯橄岩。芝麻坊石榴子石二辉橄榄岩的早期变质演化记录了它们被卷入大陆板片俯冲带之前的地幔楔上升对流过程。笔者认为芝麻坊石榴子石二辉橄榄岩的原岩来源于早期俯冲大洋板片之上的深部高温富集地幔楔,洋壳俯冲过程中的地幔楔对流导致其上升到弧后或岛弧之下的地幔楔浅部,减压部分熔融使原本富集的石榴子石二辉橄榄岩转化为难熔的尖晶石方辉橄榄岩或尖晶石纯橄岩。  相似文献   

17.
The ultramafic body sampled in the Chinese Continental Scientific Drilling (CCSD) Hole PP3 is located in the eastern part of the Dabie-Sulu UHP metamorphic belt near Donghai County. It is about 480 m thick, and consists chiefly of garnet peridotite, dunite and serpentinite. The principal minerals include olivine, chromium spinel, diopside, enstatite, garnet with minor secondary augite, phlogopite and amphibole. Both the olivine and orthopyroxene are highly magnesian, and the garnet is pyropic with 5.4-6.4% CaO and 0.3-3.3% Cr2O3. Two generations of clinopyroxene are present; an early diopside followed by augite. Chromium spinels are highly variable with Cr#s (100Cr / (Cr + Al)) between 51 and 89, and their compositions reflect different processes of formation, namely partial melting and eclogite, amphibole and greenschist facies metamorphism. The Mg#s (100 Mg / (Mg + Fe2+))of the spinels correlate positively with the Cr#s but negatively with oxygen fugacity. Based on the spinel compositions the ultramafic rocks originated in the shallow mantle, then subducted to depths of more than 100 km and finally exhumed to the surface. They underwent partial melting at shallow depths, mostly in the spinel facies, and were later transformed into garnet peridotites during deep subduction. All of the rocks were weakly metasomatized during exhumation and were subjected to retrograde metamorphism.  相似文献   

18.
Ultramafic xenoliths of garnet lherzolite (?rare spinel), spinellherzolites, spinel harzburgites, clinopyroxenites, and clinopyroxenemegacrysts were collected from Cenozoic basalts in all partsof eastern China. From their modal composition and mineral chemistryall the xenoliths may be placed into three types representing:a fertile or more primitive mantle (garnet lherzolite and spinellherzolite), a refractory or more depleted mantle (spinel harzburgiteand dunite), and inclusions cognate with the host alkali basaltsat mantle pressures (pyroxenite and megacrysts). There are systematicdifferences between the mineral compositions of each type. Spinelshows a wide compositional range and the spinel cr-number [100Cr/(Cr + Al)] is a significant indicator of the xenolithtype. Spinel cr-number and Al2O3 of coexisting minerals (spinel,clinopyroxene, and orthopyroxene) are useful as refractory indicatorsfor spinel peridotite in that the cr-number increases and thepercentage of Al2O3 decreases with increasing degrees of melting.In garnet peridotite, however, the same functions vary withpressure, not degree of melting. According to P–T estimates,the various xenoliths were derived from a large range of depthsin the upper mantle: spinel peridotite from approximately 11to 22 kb (37–66 km), spinel/garnet lherzolite from 19to 24 kb (62–80 km), and garnet lherzolite from 24 to25 kb (79–83 km). We conclude that the uppermost mantlebeneath eastern China is heterogeneous, with a north-northeastzone of more depleted mantle lying beneath the continental marginand a more primitive mantle occurring towards the continentalinterior.  相似文献   

19.
大别山北坡霍山饶拔寨等地的超基性岩中含有石榴辉石岩的包体。石榴辉石岩为草绿色致密块状 ,呈分米级的块体出现于蛇纹石化强烈的橄榄岩中。运用成因矿物学的方法 ,研究对比了石榴辉石岩的主要矿物组成石榴子石 ( Prp2 5— 3 5 )和钠质普通辉石 ( Jd1 0— 2 5 )等。岩石结构显示退变质作用有两期 :榴辉岩相退变形成的麻粒岩相矿物组合明显地被角闪岩相所切割。石榴辉石岩的寄主岩是尖晶石橄榄岩类 ,包括尖晶石方辉橄榄岩和尖晶石二辉橄榄岩。由于强烈的蛇纹石化 ,残余的橄榄石 ( Fo92— 93 )仅占 5%~ 4 0 % ,斜方辉石富镁 ( En87— 93)并有解理弯曲等韧性变形现象。采用 Ellisand Green的石榴子石单斜辉石 Fe-Mg交换平衡温度计 ,可计算出石榴辉石岩的 Fe-Mg分配系数 ( KD)为 4 .0 6~ 5.2 8。变质温度 t=84 1~ 94 3℃ ,估算压力 p=1 .5GPa,可以推测该橄榄岩体是从深度约 60 km的地幔 ,固态侵位于下地壳 ,而后与之一起隆升到地表。显然 ,此种石榴辉石岩应属 Coleman所划分的 A型榴辉岩 ,它与地幔岩浆作用有密切关系。石榴辉石岩和橄榄岩的岩石化学特征和稀土配分形式 ,说明它们的化学性质相当于地幔部分熔融所形成的玄武岩熔体及其残留体。在侧重探讨石榴辉石岩及其有关岩石中主要造岩矿物的成因矿物?  相似文献   

20.
The Jiangzhuang ultrahigh‐pressure (UHP) metamorphic peridotite from south Sulu, eastern China occurs as a layer within gneiss with eclogite blocks, and consists of coarse‐grained garnet porphyroblasts and a fine‐grained matrix assemblage of garnet + forsterite + enstatite + diopside ± phlogopite ± Ti‐clinohumite ± magnesite. Both types of garnet are characterized by high MgO content and depletion of light rare earth element (LREE) and enrichment of heavy rare earth element, but the matrix garnet has lower MgO, TiO2 and higher Cr2O3 and REE contents. Diopside displays LREE enrichment, and has low but variable large‐ion lithophile element (LILE) contents. Phlogopite is a major carrier of LILE. Ti‐clinohumite contains high Nb, Ta, Cr, Ni, V and Co contents. The P–T conditions of 4.5–6.0 GPa and 850–950 °C were estimated for matrix mineral assemblages. Most peridotites are depleted in Al2O3, CaO and TiO2, and enriched in SiO2, K2O, REE and LILE. In contrast to phlogopite‐free peridotites, the phlogopite‐bearing peridotites have higher K2O, Zr, REE and LILE contents. Zircon occurs only in the phlogopite‐bearing peridotites, shows no zoning, with low REE contents and Th/U ratios, and yields tight UPb ages of 225–220 Ma, indicating the peridotites experienced consistent Triassic UHP metamorphism with subducted supercrustal rocks. These data demonstrate that the Jiangzhuang peridotites were derived from the depleted mantle wedge of the North China Craton, and experienced various degrees of metasomatism. The phlogopite‐free peridotites may have been subjected to an early cryptic metasomatism at UHP conditions of the mantle wedge, whereas the phlogopite‐bearing peridotites were subjected to a subsequent strong metasomatism, characterized by distinctly enrichment in LILE, LREE, Zr and K as well as the growth of zircon and volatile‐bearing minerals at UHP subduction conditions. The related metasomatism may have resulted from the filtration of fluids sourced mainly from deeply subducted supracrustal rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号