首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

2.
Abstract. .A population of Talorchestia capensis was sampled in dune slacks over the period of one year. Two hatching periods, one in March and one in September, were observed. Growth was rapid, the amphipods reaching a size of 8.4 mm standard length in 18 months. Maximum growth occurred in spring and minimum growth in winter. Annual mortality rates for summer- and winter-hatched individuals were low, 0.22-y“1 and 0.16-y”1. Average production for the summer classes was 7.2g-y?‘ (dry mass) and for the winter classes 2.9-y“1, with a P/B ratio of 2.25-y”’. Production values peaked during autumn and summer. Abundance and biomass estimates showed maxima during summer and minima in early spring. Reproductive output was low, 0.1 kJ ? m-2 y“1, indicating that 7 % of the total production is used for reproduction and 93 % for somatic production. The assimilated energy flow through the population was estimated to be 16.3 kJ m?2 y?‘ and consumption about 81.6 kJ m-2 y_’.  相似文献   

3.
Results concerning the concentration of cadmium and lead in Mediterranean waters collected during the 2nd PHYCEMED cruise (Oct. 1983) are discussed. Sampling has been performed at seven stations in the Western Mediterranean Basin, two in the Strait of Gibraltar and the near Atlantic, two in the Sicily Strait and the Eastern Basin.In the Western Basin the observations are in fair agreement with those of PHYCEMED 1. Cadmium has a fairly homogeneous distribution vertically as well as from one station to another, with an average concentration of 8 ng l−1; while lead shows a slight but continuous decrease in concentrations with depth (from at least 50 ng l−1 in surface waters to 20 or 25 ng l−1 at depth). On the other hand, at the basin boundaries, where waters from different origins are present, vertical distributions appear very different. On the basis of calculated water budgets it can be estimated that the Mediterranean Sea discharges about 200 t y−1 of cadmium and about 250 t y−1 of lead into the Atlantic Ocean while 1000 t y−1 of lead are transferred from the Western to the Eastern Basin.  相似文献   

4.
Production of the marine calanoid copepod Acartia steueri was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay, on the southeastern coast of Korea. Phytoplankton standing stock ranged over 1.0 to 9.3 mg chl.a m−3, and annual primary productivity (by the C-14 method) at three stations was estimated at 200 gC m−2 yr−1. Acartia steueri (nauplii + copepodids + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. steueri, excluding the NI stage, was 0.01–4.55 mgC m−3 (mean: 0.68 mgC m−3) with peaks in November, February, May and July-early August, and relatively low biomass in September– January. Instantaneous growth rates of the nauplius stages were higher than the copepodid stages. Annual production of A. steueri was 25.1 mgC m−3 yr−1 (or 166 mgC m−2 yr−1), showing peaks in November, May and July–August with a small peak in February, and low production in December–April and September–October. There were no significant relationships between the daily production rate of A. steueri and temperature or chlorophyll a concentration, indicating that unknown other factors might be related to the variation of the production rate.  相似文献   

5.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

6.
The variability in dissolved and particulate organic matter, plankton biomass, community structure and metabolism, and vertical carbon fluxes were studied at four stations (D1–D4), placed along a coastal-offshore gradient of an upwelling filament developed near Cape Juby (NW Africa). The filament was revealed as a complex and variable system in terms of its hydrological structure and distribution of biological properties. An offshore shift from large to small phytoplankton cells, as well as from higher to lower autotrophic biomass, was not paralleled by a similar gradient in particulate (POC) or dissolved (DOC) organic carbon. Rather, stations in the central part of the filament (D2 and D3) presented the highest organic matter concentrations. Autotrophic carbon (POCChl) accounted for 53% (onshore station, D1) to 27% (offshore station, D4) of total POC (assuming a carbon to chlorophyll ratio of 50), from which nano- and pico-phytoplankton biomasses (POCA < 10 μm) represented 14% (D1) to 79% (D4) of POCChl. The biomass of small hetrotrophs (POCH < 10 μm) was equivalent to POCA < 10 μm, except at D1, where small autotrophs were less abundant. Dark community respiration (Rd) in the euphotic zone was in general high, almost equivalent to gross production (Pg), but decreasing offshore (D1–D4, from 108 to 41 mmol C m−2 d−1). POC sedimentation rates (POCsed) below the euphotic zone ranged from 17 to 6 mmol C m−2 d−1. Only at D4 was a positive carbon balance observed: Pg−(Rd + POCsed) = 42 mmol C m−2 d−1. Compared to other filament studies from the NE Atlantic coast, the Cape Juby filament presented lower sedimentation rates and higher respiration rates with respect to gross production. We suggest that this is caused by the recirculation of the filament water, induced by the presence of an associated cyclonic eddy, acting as a trapping mechanism for organic matter. The export capacity of the Cape Juby filament therefore would be constrained to the frequency of the interactions of the filament with island-induced eddies.  相似文献   

7.
The first oceanographic research (hydrography, nutrient salts, chlorophyll, primary production and phytoplankton assemblages) in a Middle Galician Ria was carried out in Corme-Laxe during 2001, just a year before the Prestige oil spill, being the only reference to evaluate eventual changes in the phytoplankton community. Due to the small size of this ria (6.5 km2), oceanographic processes were driven by the continental water supplied by Anllons River during the wet season (20–30 m3 s−1 in winter), and the strong oceanic influence from the nearby shelf during the dry season. The annual cycle showed a spring bloom with high levels of chlorophyll (up to 14 μg Chl-a L−1) and primary production (3 g C m−2 d−1) and a summer upwelling bloom (up to 8 μg Chl-a L−1 and 10 g C m−2 d−1) where the proximity of the Galician upwelling core (<13.5 °C at sea surface) favors the input of upwelled seawater (up to 9 μM of nitrate and silicate) to the bottom ria layer, even during summer stratification events (primary production around 2 g C m−2 d−1). Thus, phytoplankton assemblages form a “continuum” from spring to autumn with a predominance of diatoms and overlapping species between consecutive periods; only in autumn dinoflagellates and flagellates characterized the phytoplankton community. In the Middle Rias as Corme-Laxe, the nutrient values, Chl-a, primary production and phytoplankton abundance for productive periods were higher than those reported for the Northern (Ria of A Coruña) and Southern Rias (Ria of Arousa) for year 2001; this suggests the importance of the hydrographic events occurring in the zone of maximum upwelling intensity of the Western Iberian Shelf, where a lack of annual cycles studies exists.  相似文献   

8.
A steady state, mass balance, trophic network has been constructed to illustrate the flow of energy in the Seine Estuary by using Network Analysis and Ecopath methods. This ecosystem shows 15 compartments from primary producers to the top consumers (fish and birds). This study has been compared with other ecosystems of comparable nature located in North America (Narragansett, Chesapeake, Delaware Bays), Europe (Ems Estuary, Dublin Bay and Bay of Somme), and South Africa (Swartkops Estuary) in which analysis of trophic network has been applied with similar methods.The Seine Estuary shows values of some global parameters and indices either close to large North American bays and a South African estuary characterised by the complexity of their trophic network, or values near European bays and estuaries, or else remain typical of the Seine estuary. All of this reflects specific functioning of the Seine Estuary which can be explained by the analysis of the dominant food web. In the upstream sector an important pelagic food web was found correlated with highest primary production, especially planktonic, which is rapidly consumed by an abundant zooplankton and suprabenthos (Mysidacae and Decapoda Crustacea). This reveals the dominant consumer role of this sector. The external fluvial inputs (277.80 gC m−2 y−1) are transferred to the downstream sector which produces the major export (548.43 gC m−2 y−1), in parallel with the low consumption and efficiency of dominant benthos component from its bentho-pelagic food web. This reflects the dominant exporter role of this sector.In the Seine Estuary low values of detritivory index D/H (2.52), recycling index FCI (16.1%) and connectance (0.24) were found associated with high values of P/B ratio (38.2%), sum of exports (548.43 gC m−2 y−1) and the great difference between ratio of ascendency to capacity development A/C and internal ratio Ai/Ci. This shows the lack of a dominant resource as in Delaware Bay, that the state of development is different from a mature ecosystem, and the dependance on external connections similar to the Bay of Somme, another ecosystem of Eastern Channel, France.  相似文献   

9.
Field investigations on the population dynamics of Nereis diversicolor were carried out from January 2002 to December 2003 in the estuary of Oued Souss (southwestern Morocco) to determine the changes caused by setting up of a domestic and industrial wastewater purification plant (M'zar) before and after by the end of wastewater discharges in November 2002 on the structure of the ecosystem. Samples of N. diversicolor were collected monthly in the intertidal zone at low tide before (during 2002) and after (during 2003) the end of wastewater discharges.Separation of cohorts using the Algorithm EM method (McLachlan, G.J., Krishnan, T., 1997. The EM algorithm and extensions. Wiley Series in Probability and Statistics. Wiley, New York, 274 pp.) allowed determination of the growth rate (mm day−1) by cohort and the annual production. The data showed significant differences between populations of Nereis diversicolor before and after the end of wastewater discharges. During the wastewater discharge period (2002), the population had a mean annual density of 1992 ind m−2, a mean annual biomass of 75.52 g DW m−2 and an annual secondary production of 141.3 g DW m−2 with a P/B ratio of 1.87. After the end of discharges (2003), density, biomass and secondary production decreased significantly. The annual averages for these parameters were 740 ind m−2, 14.16 g DW m−2 and 23.83 g DW m−2, respectively, with a P/B ratio of 1.68.The important decrease observed in density, biomass and secondary production of Nereis diversicolor may be attributed (a) to the environmental changes observed after the end of wastewater discharges in the estuary of Oued Souss, namely the increase of salinity and the decrease of organic matter content, and (b) to the migration of this species towards other areas.  相似文献   

10.
The geomorphic, oceanographic, terrestrial and anthropogenic attributes of the European coastal zone are described and published data on ecosystem function (primary production and respiration) are reviewed. Four regions are considered: the Baltic Sea, Mediterranean Sea, Black Sea and the European Atlantic coast including the North Sea. The metabolic database (194 papers) suffers from a non-homogeneous geographical coverage with no usable data for the Black Sea which was therefore excluded from this part of our study. Pelagic gross primary production in European open shelves is, by far, the most documented parameter with an estimated mean of 41 mmol C m−2 d−1, the lowest value is reported in the Mediterranean Sea (21 mmol C m−2 d−1) and the highest one in the Atlantic/North Sea area (51 mmol C m−2 d−1). Microphytobenthic primary production, mostly measured in shallow areas, is extrapolated to the entire 0–200 m depth range. Its contribution to total primary production is low in all regions (mean: 1.5 mmol C m−2 d−1). Although macrophyte beds are very productive, a regional production estimate is not provided in this study because their geographical distribution along the European coastline remains unknown. Measurements of pelagic community respiration are clearly too sparse, especially below the euphotic zone, to yield an accurate picture of the fate of organic matter produced in the water column. With a mean value of 17 mmol C m−2 d−1, benthic community respiration consumes approximately 40% of the pelagic organic matter production. Estuaries generally exhibit high metabolic rates and a large range of variation in all parameters, except microphytobenthic primary production. Finally, the problem of eutrophication in Europe is discussed and the metabolic data obtained in the framework of the Land–Ocean Interactions in the Coastal Zone (LOICZ) project are compared with available direct measurements of net ecosystem production.  相似文献   

11.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

12.
Rates of sediment accumulation and microbial mineralization were examined at three Kandelia candel forests spanning the intertidal zone along the south coastline of the heavily urbanized Jiulongljiang Estuary, Fujian Province, China. Mass sediment accumulation rates were rapid (range: 10–62 kg m−2 y−1) but decreased from the low- to the high-intertidal zone. High levels of radionuclides suggest that these sediments originate from erosion of agricultural soils within the catchment. Mineralization of sediment carbon and nitrogen was correspondingly rapid, with total rate of mineralization ranging from 135 to 191 mol C m−2 y−1 and 9 to 11 mol N m−2 y−1; rates were faster in summer than in autumn/winter. Rates of mineralization efficiency (70–93% for C; 69–92% for N) increased, as burial efficiency (7–30% for C; 8–31% for N) decreased, from the low-to the high-intertidal mangroves. Sulphate reduction was the dominant metabolic pathway to a depth of 1 m, with rates (19–281 mmol S m−2 d−1) exceeding those measured in other intertidal deposits. There is some evidence that Fe and Mn reduction-oxidation cycles are coupled to the activities of live roots within the 0–40 cm depth horizon. Oxic respiration accounted for 5–12% of total carbon mineralization. Methane flux was slow and highly variable when detectable (range: 5–66 μmol CH4 m−2 d−1). Nitrous oxide flux was also highly variable, but within the range (1.6–106.5 μmol N2O m−2 d−1) measured in other intertidal sediments. Rates of denitrification were rapid, ranging from 1106 to 3780 μmol N2 m−2 d−1, and equating to 11–20% of total sediment nitrogen inputs. Denitrification was supported by rapid NH4 release within surface deposits (range: 3.6–6.1 mmol m−2 d−1). Our results support the notion that mangrove forests are net accumulation sites for sediment and associated elements within estuaries, especially Kandelia candel forests receiving significant inputs as a direct result of intense human activity along the south China coast.  相似文献   

13.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

14.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

15.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

16.
The seasonal variability of leaf litter removal by crabs was observed from May 2006 to April 2007 in a Kandelia candel mangrove forest in Jiulongjiang Estuary, China. Daily average quantities of leaf fall ranged 0.85–3.86 gDW m−2 d−1, with high values in May, August, October and November. The whole-year's leaf fall was 6.48 t ha−1 yr−1 (1.81 gDW m−2 d−1). The standing stock of leaf litter on the forest floor was 7.78 gDW m−2 averaged from the whole year's data, with the lowest value in December (1.23 gDW m−2) and the highest in April (16.18 gDW m−2). Annually averaged removal (consumption on mangrove floor + burial in burrows) rate of leaf litter by crabs was 0.59 gDW m−2 d−1. High seasonal variability was observed in the removal rates of leaf litter by crabs. Removal rates in the winter months (December, January and February) were 0.07–0.09 gDW m−2 d−1, much lower than those in other months with values of 0.59–1.18 gDW m−2 d−1. Annually averaged percentage of leaf fall removed by crabs was 33%, with the highest values in September (reached 76%) and the lowest values in winter months. Of leaf litter removed by crabs, a large proportion was buried by crabs, and only 12% was consumed by crabs on the forest floor. Leaf litter removal rate, consumption rate on the forest floor, percentages of leaf fall and standing stock removed on the forest floor were significantly positively correlated with air temperature, indicating that leaf removal ability by crabs was higher in warm months than in cold months.  相似文献   

17.
As a contribution to the EC-OMEX-II program, sediment carbon and nitrogen budgets are presented for the Iberian Margin (northeastern Atlantic). The budgets for degradable organic carbon and associated nitrogen were calculated from sediment and pore water properties, using a steady-state version of a numerical coupled diagenetic model, OMEXDIA. Data were collected throughout the major upwelling period along five transects, four of which were located on the open margin and one positioned in a major submarine canyon, the Nazaré Canyon.A comparison of in situ oxygen profiles measured with monocathodic microelectrodes and with Clark type microelectrodes showed that monocathodic electrodes overestimate the oxygen concentration gradient near the sediment–water interface. This artifact probably results from the loss in sensitivity of the monocathodic microelectrode during profiling. Shipboard time course measurements with Clark type electrodes demonstrated transient conditions upon sediment retrieval on deck and indicated enhanced rates of oxygen consumption in the surface sediment, presumably as a result of lysis or exudation of oxidisable substrates by infauna. As a result, oxygen fluxes calculated from shipboard oxygen profiles overestimated in situ fluxes by up to a factor of 5 for water depths >1000 m.The sediments from the canyon and from a depositional area on the shelf were enriched in organic carbon (3–4.5 wt%) relative to the open margin stations (0.5–2 wt%) and showed C/N ratios exceeding Redfield stoichiometry for marine organic matter, indicating there was deposition of organic carbon of terrestrial origin in these areas. The oxidation of organic carbon on the open margin declined from ˜11 gCm−2y−1 on the shelf to 2 gCm−2y−1 at 5000 m water depth, and was dominated by aerobic oxidation. The reactivity of the degradable organic carbon at the time of deposition was <2.5 y−1 on the shelf, and declined to <0.5 y−1 offshore. The burial of refractory organic carbon at the stations along the open margin transects also declined with increasing water depth from ˜5 gCm−2y−1 on the shelf to <1 gCm−2y−1 at 2000 m depth, whereas the burial of particulate inorganic carbon declined from ˜20 gCm−2y−1 to <5 gCm−2y−1. A comparison of the estimated total organic carbon deposition and predicted delivery for the shelf suggest that 58 to 165 gCm−2y−1 is oxidized in the water column, laterally advected, or focused into one of the canyons.Anaerobic oxidation, denitrification and, therefore, total oxidation of organic carbon was enhanced within the canyon relative to the open margin. Total organic carbon oxidation decreased with water depth from 22 gCm−2y−1 at the head of the canyon to 3 gCm−2y−1 over its fan. The reactivity of the organic carbon deposited in the canyon was lower than those of the shelf stations, suggesting that the canyon is being enriched in older, laterally advected organic matter. The burial of refractory organic carbon in sediments from the Nazaré Canyon was considerably higher than in the sediments from the open margin; it also decreased with depth from 20 gCm−2y−1 at 343 m to ˜2.5 gCm−2y−1 at 4298 m water depth. The burial of particulate inorganic carbon was slightly lower than that of refractory organic carbon.The burial of refractory organic carbon and the deposition of degradable organic carbon were both positively correlated with the sedimentation rates for the Iberian Margin, and indicated burial efficiencies were 0.6 to 48%. A single trend for burial efficiency versus sedimentation rate for both the canyon and the open margin indicates that the sedimentation rate was the master variable for the geographical distribution of organic carbon oxidation and carbon preservation on the NW Iberian Margin.  相似文献   

18.
A mussel bed was sampled monthly at four intertidal levels (mid: 2.15; mid-low: 1.65; low: 1.2 and sublittoral fringe: 0.7 m from chart datum) from July 1979 to July 1980 at Pointe-Mitis in the St. Lawrence estuary. A strong spring reduction of abundance (both in density and biomass) suggested that the mussel bed was being degraded. Community perturbation was attributed to ice scour. Partial reestablishment of the mussel bed (all age classes) was observed during late spring and early summer and occurred mainly at the mid-low intertidal level. Changes in the size structure of the mussel bed with level suggest that the annual windstorm regime may be an important factor in the dynamics of the bed. Mean body mass decreased at the three lower shore levels but increased at the highest shore level. Overall, net secondary production (assessed by the increment-summation method) was negative due to the decrease in mean body mass. Annual production rates (kJ m−2 y−1) from the mid intertidal level to the sublittoral fringe were 1130, − 4072, − 4013 and − 3258, respectively, while P/B ratios (y−1) were 0.17, − 0.69, − 0.50 and − 0.45. The calculated production and the productivity (potential production) are compared and used to provide insight into the condition of the mussel bed.  相似文献   

19.
Seasonal dynamics of Zostera noltii was studied during 1984 in Arcachon Bay, France. In this Bay, Z. noltii colonizes 70 km2, i.e. approximately 50% of the total area, while Z. marina occupies only 4 km2. Densities and length of vegetative and generative shoots and above-ground and below-ground biomasses were monitored in four meadows which differed according to their location in the Bay, tidal level and sediment composition. Three of these meadows were homogeneous, well-established beds whilst the fourth was under colonization and patchy. Shoot densities and maximal below-ground biomass were lower in the inner silty seagrass bed than in the sandy meadows located in the centre of the Bay. Maximal above-ground biomasses were similar in the two population types. In the well-established beds, vegetative shoot densities, above-ground and below-ground biomasses showed a unimodal pattern with minima in winter (4000 to 9000 shoots·m−2, 40 to 80 g DW·m−2, and 40 to 60 g DW·m−2, respectively) and maxima in summer (11000 to 22000 shoots·m−2, 110 to 150 g DW·m−2, and 140 to 200 g DW·m−2, respectively). Reproductive shoots were observed from the beginning of June until the end of September, except in the colonizing bed where they persisted until December. Furthermore, in the latter, maximal reproductive shoot density was higher (2600 shoots·m−2) than in the established beds (650 to 960 shoots·m−2). The total production of Z. noltii in Arcachon Bay was estimated to approximately 35.6·106 kg DW·y−1 (19.4·106 kg DW·y−1 for above-ground parts and 16.2·106 kg DW·y−1 for below-ground parts).  相似文献   

20.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号