首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对郯庐断裂带东西两侧的莱阳、六安、庐枞和怀宁等中新生代盆地内的中三叠世至早白垩世沉积构造变形进行了古地磁研究。采样区大多数特征磁化方向通过了褶皱检验或反极性检验,从上述地区共获得了10个可靠的中三叠世-早白垩世的古地磁极。该结果与华南地块的视极移曲线对比,可以看出,从中侏罗世以来,郯庐断裂带东西两侧不存在大规模地水平相对位移。但是,断裂带东边的华南地块部分存在15°-25°的逆时针转动。这种转动主要应发生在晚侏罗世,主要与华南、华北地块的碰撞以及太平洋板块的挤压有关。   相似文献   

2.
The Caucasus is very important for our understanding of tectonic evolution of the Alpine belt, but only a few reliable paleomagnetic results were reported from this region so far. We studied a collection of more than 300 samples of middle Eocene volcanics and volcano-sedimentary rocks from 10 localities in the Adjaro–Trialet tectonic zone (ATZ) in the western part of the Caucasus. Stepwise thermal demagnetization isolates a characteristic remanent magnetization (ChRM) in 19 sites out of 31 studied. ChRM reversed directions prevail, and a few vectors of normal polarity are antipodal to the reversed ones after tilt correction. The fold test is positive too, and we consider the ChRM primary. Analysis of Tertiary declinations and strikes of Alpine folds in the Adjaro–Trialet zone and the Pontides in Northern Turkey shows a large data scatter; Late Cretaceous data from the same region, however, reveal good correlation between paleomagnetic and structural data. Combining Late Cretaceous and Tertiary data indicates oroclinal bending of the Alpine structures which are locally complicated with different deformation. The overall mean Tertiary inclination is slightly shallower than the reference Eurasian inclination recalculated from one apparent polar wander path (APWP), but agrees with other. This finding is in accord with geological evidence on moderate post-Eocene shortening across the Caucasus. We did not find any indication of long-lived paleomagnetic anomalies, such as to Cenozoic anomalously shallow inclinations further to the east in Central Asia.  相似文献   

3.
The Gran Paradiso nappe of the northwestern Alps mostly consists of augen gneisses derived from the Alpine deformation of Permian granitoids. The regional foliation of the augen gneisses developed at lower amphibolite facies conditions and is associated with a top-to-west sense of shear. The granitoid protolith is preserved in the kilometre-scale low-strain domain of the Piantonetto Valley and mainly consists of a porphyritic metagranite including joints, leucocratic dykes and biotite-rich schlieren. In this low-strain domain, the Alpine deformation is mainly localized in discrete ductile shear zones within weakly foliated metagranite. The shear zones mostly dip towards S–SE in a shallow (shear zones 1) to steep inclination (shear zones 2). The shear zones show typical features that can be explained by reactivation of pre-existing joints and planar compositional heterogeneities. Palaeostress and strain analysis indicate that shear zones and the metagranite foliation both formed in the presence of a strong component of flattening. The kinematics of individual shear zones depends on the orientation of the original heterogeneities (acting as nucleation planes) and by partitioning of strain components at the kilometre-scale with concentration of the flattening component to the Piantonetto low-strain domain. The strain geometry and the kinematics of individual shear zones within Piantonetto are not directly connected to the top-to-west sense of tectonic transport observed elsewhere in the Gran Paradiso nappe. However, the bulk stress ellipsoid reconstructed for the incipient shear zone network within very weakly deformed granites is oriented consistently with the bulk direction of tectonic transport within the Gran Paradiso massif. We conclude that the shear zone network of the Piantonetto Valley is representative of the incipient stages of ductile deformation of a granite nappe. Even if its architecture is determined by the arrangement of pre-existing structural and compositional heterogeneities, aspects of the large-scale bulk strain can be derived from this local shear zone pattern.  相似文献   

4.
We review the paleomagnetic studies published on the Northern Calcareous Alps (NCA) and also include data from two theses that were not published yet. Moreover, we present new data from upper Santonian to Maastrichtian Gosau deposits from the Neue Welt Area in the easternmost part of the NCA (D = 325.8. I = 37.1, α95 = 8.3, positive fold test, thus indicating counterclockwise rotation and inclination flattening). Although several of the recently published studies provide valuable data, presently the paleomagnetic data base of the NCA does not provide a sufficient frame work for a quantitatively backed paleogeographic model. By thus documenting the state of research, we want to outline major problems regarding the paleomagnetic characterization of the NCA and also specify the kind of paleomagnetic future work that is particularly needed within this mountain range.  相似文献   

5.
Radiolarian-rich sediments dominated pelagic deposition over large portions of the Tethys Ocean during middle to late Jurassic time as shown by extensive bedded chert sequences found in both continental margin and ophiolite units of the Mediterranean region. Which paleoceanographic mechanisms and paleotectonic setting favored radiolarian deposition during the Jurassic, and the nature of a Tethys-wide change from biosiliceous to biocalcareous (mainly nannofossil) deposition at the beginning of Cretaceous time, have remained open questions. Previous paleomagnetic analyses of Jurassic red radiolarian cherts in the Italian Apennines indicate that radiolarian deposition occurred at low peri-equatorial latitudes, similar to modern day deposition of radiolarian-rich sediments within equatorial zones of high biologic productivity. To test this result for other sectors of the Mediterranean region, we undertook paleomagnetic study of Mesozoic (mostly middle to upper Jurassic) red radiolarian cherts within the Aegean region on the Peloponnesus and in continental Greece. Sampled units are from the Sub-Pelagonian Zone on the Argolis Peninsula, the Pindos–Olonos Zone on the Koroni Peninsula, near Karpenissi in central Greece, and the Ionian Zone in the Varathi area of northwestern Greece. Thermal demagnetization of samples from all sections removed low-temperature viscous and moderate-temperature overprint magnetizations that fail the available fold tests. At Argolis and Koroni, however, the cherts carry a third high-temperature magnetization that generally exhibits a polarity stratigraphy and passes the available fold tests. We interpret the high-temperature component to be the primary magnetization acquired during chert deposition and early diagenesis. At Kandhia and Koliaky (Argolis), the primary declinations and previous results indicate clockwise vertical-axis rotations of  40° relative to “stable” Europe. Due to ambiguities in hemispheric origin (N or S) and thus paleomagnetic polarity, the observed declinations could indicate either clockwise (CW) or counterclockwise (CCW) vertical-axis rotations. Thus at Adriani (Koroni), the primary declinations indicate either CW or CCW rotations of  95° or  84°, depending on paleomagnetic polarity and age. The primary inclinations for all Peloponnesus sites indicate peri-equatorial paleolatitudes similar to those found for coeval radiolarian cherts exposed in other Mediterranean orogenic belts. Our new paleomagnetic data support the interpretation that Mesozoic radiolarites within the Tethys Ocean were originally deposited along peri-equatorial belts of divergence and high biologic productivity.  相似文献   

6.
Extensive sampling along vertical and north-south cross-sections in the Gran Paradiso basement (internal crystalline massif, Western Alps) reveals an inverse gradient of zircon fission-track ages with respect to altitude, which is explained by an inverted metamorphism during Eocene time. Subsequent to the obduction of the Schistes Lustrés nappe (high pressure Eoalpine phase), the Gran Paradiso massif cooled down 90-80 Myrs ago. The Austro-Alpine nappe of Monte Emilius — Dent Blanche overthrust the Gran Paradiso massif 38–40 Myrs ago, inducing in its basement an inverted metamorphism or, more precisely, a nappe emplacement metamorphism (greenschist facies). The last cooling below 100° C occurred as early as 35—40 Myrs ago in the southern Gran Paradiso massif; in the northern part, this last cooling occurred 20 Myrs ago, accompanied by an important uplift phase (2 mm/year).  相似文献   

7.
Paleomagnetic research of the Neoarchean polyphase Panozero sanukitoid massif of the Fennoscandian Shield was performed. Paleomagnetic studies of three rock associations of the massif was used to obtain the paleomagnetic pole Φ = −10.2°C Λ = 226.1°C, dp = 4.9°, dm = 3.5° ϕm = − 36.1°. Positive tests of the contact zone between rocks of the sanukitoid massif and the country Mesoarchean metavolcanics, as well as overlying Jatulian amygdaloid basalts and diabases of the Segozero structural feature testify to the primary origin of the high-temperature component of rock magnetization obtained. The paleomagnetic pole obtained indicates that during the period from 2.74 to 2.73 Ga the Karelian Craton was located in tropical moderate latitudes of the South Hemisphere and it possibly moved to the tropical latitudes during the Neoarchean.  相似文献   

8.
To verify paleomagnetic proof for megatectonic translation in the Tethys a large collection of samples from a key area, the Bolzano Quartz Porphyry Plateau in the Southern Alps, was examined. Their natural remanent magnetization was analyzed with thermal, and mainly alternating field demagnetization. The result is a well-established paleomagnetic direction of D: 150° and I: −19.5° (95 = 4.9), obtained from 152 samples from 39 sites distributed over 12 volcanic units. It is argued that the inclination of this result is not significantly different from that which can be extrapolated for the Southern Alps from Early Permian paleomagnetic directions of the stable European shield. Consequently it is concluded that a paleomagnetic indication for megatectonic translation of the Southern Alps is virtually absent. But a large counterclockwise deviation of the declination is evident, and is easily explained by a counterclockwise rotation of 50° of the Southern Alps with respect to stable Europe. Since the paleomagnetic direction of the Early Permian volcanics of the Southern Alps fits in reasonably well with the (poorly known) Early Permian paleomagnetic pattern of Africa, a coherence between both regions is presumed.  相似文献   

9.
点苍山—哀牢山带基础地质问题思考   总被引:4,自引:0,他引:4  
点苍山—哀牢山是滇西重要的变质带。点苍山-罗平山断裂将点苍山分为两个结合带:东部甘孜-理塘结合带东以洱海—箐河断裂为界,包括石鼓蛇绿混杂岩带、义敦岛弧带和中咱-中甸地块。西部金沙江结合带西以乔后-西洱河断裂为界,包括古元古界沟头箐岩群结晶基底、河底-李子坪蛇绿混杂岩带及维西陆缘弧带。哀牢山东侧红河断裂是上扬子地块与金沙江接合带的分界,哀牢山断裂是一条逆冲推覆断裂,不是金沙江结合带的东界。  相似文献   

10.
The widely distributed Cenozoic paleomagnetic inclination anomaly in Asia is usually attributed to either a widespread error of magnetic field recording due to an inclination flattening mechanism in sediments, or to the persistence of an anomalous non-dipolar component of the geomagnetic field throughout the Tertiary. Based on an analysis of the Asian paleomagnetic database for Meso-Cenozoic times, we suggest that instead this puzzling anomaly results from an overlooked global plate tectonics cause where the wide so-called Eurasian plate would have suffered from previously undetected transpressive north–south relative movements between its western and eastern ends since the Cretaceous. These relative movements are most probably accommodated by a component of right-lateral shear movement distributed in the Tornquist–Tesseyre zone, and a localized left-lateral shear movement in the Ural Mountain chain during the Tertiary. Therefore, Eurasia was not the single rigid plate that Cenozoic plate reconstructions have accepted.  相似文献   

11.
沿红河断裂带(RRFZ)分布的点苍山变质核杂岩是一个不完整的变质核杂岩,它由两个特征迥异的单元组成,包括被同构造二长花岗岩侵入角闪岩相构造岩组成的下盘和绿片岩相的拆离断层带。下盘岩石包括具有高温构造组合,具有指示左行走滑剪切运动方向的L型糜棱岩或LS型糜棱岩。拆离断层带是一个上盘向E到SE伸展剪切的低温剪切带,由具有剪应变和压应变的典型S-L糜棱岩构成。低温构造岩也包括发育于下盘的几个糜棱岩化似斑状二长花岗岩侵入体。变质核杂岩与西侧覆盖未变质的中生代沉积岩并置,东部受第四纪断层作用影响为沿洱海分布的更新世—全新世沉积盆地。通过对点苍山变质核杂岩的构造研究,结合邻区变质核杂岩的地质年代学及古地磁学分析,我们认为:位于东南亚红河断裂和实皆断裂带之间的扇形区域内出现的变质核杂岩与渐新世—中新世时期区域性伸展作用有关,而伸展作用是由印支地块的差异性旋转产生的,其原因是由于约33Ma开始斜向俯冲的印度板块的顺时针旋转和回退所致。  相似文献   

12.
Rocks of the North American Mid-Continent Rift (MCR) in the Keweenaw Peninsula of northern Michigan display a change in structural trend from east to west, varying in strike from 100° in the east to 35° farther west, before returning to a more east–west trend of 80° near Wisconsin. In general, curvature can be described either as of primary origin, meaning that the arc developed in its present curved state, or as of secondary origin, when the arc formed from an initially straighter geometry. A powerful tool in evaluating the origin and degree of curvature in any deformed belt is paleomagnetism, where coincident change in declination and strike is evidence for secondary curvature. Several paleomagnetic studies have been completed on rift-related sedimentary rocks, as well as lava flows, from the MCR in the Lake Superior region. Paleomagnetic directions for the sedimentary rocks vary much more in declination than in inclination, possibly reflecting a vertical axis rotation. If secondary rotation has affected the sedimentary rocks, then underlying volcanic rocks should also demonstrate a similar rotation.Thirty-one sites were collected from the Portage Lake Volcanics in the most highly curved part of the Keweenaw Peninsula in the Upper Peninsula of Michigan. Sites were chosen to maximize the variation in structural trend. Thermal demagnetization results showed two components in samples from most sites, a lower temperature A component (< 580 °C) as well as a higher temperature B component (> 580 °C). Both components were tested for primary remanence using a conglomerate test. The A component, carried by magnetite, passes the conglomerate test at a 95% confidence level, and is therefore considered a primary remanence. The B component, carried by hematite, fails at the 95% level and is considered a secondary magnetization. Most importantly, declination of the primary (A) magnetization between sites shows no correlation with strike, demonstrating that vertical axis rotations cannot explain the curvature of the Mid-Continent Rift. We conclude that curvature in the Lake Superior Region is a primary feature, likely reflecting a pre-existing zone of weakness that was exploited during rifting.  相似文献   

13.
The Aït Attab syncline, located in the Central High Atlas, displays a curved geometry in plan view, and is considered as one of the most spectacular fold shapes in the Central High Atlasic belt. We conducted a paleomagnetic study in Jurassic-Cretaceous red beds to investigate the origin of this geometry. The Natural Remanent Magnetization (NRM) is dominated by a secondary magnetization carried by haematite with unvarying normal polarity that has been dated at about 100 Ma. The regional fold test performed in both limbs of the syncline is positive and the paleomagnetic vectors (after tectonic correction) are parallel throughout the curvature, indicating a negative oroclinal bending test. These results are inconsistent with previous works that consider the bent geometry of this syncline to result from subsequent distortion of originally NE–SW trending structures by rotation about a vertical axis. We interpret the NRM data to demonstrate that the changing trend of the Aït Attab syncline is a primary feature, resulting from the influence of pre-existing, NE–SW and E-W-striking extensional faults that developed during a strike-slip regime. Paleomagnetic results also reveal that the tilting observed in the sampled red beds is post Albian, probably linked to the Cenozoic inversion of the High Atlasic belt.  相似文献   

14.
作者通过对准噶尔地块的岩脉采样的古地磁研究以及大量地质资料,确认了准噶尔地块在早二叠世位于北纬35°,与塔里木地块、哈萨克斯坦地块及西伯利亚基本上在同一纬度带中,作为劳亚大陆的一个组成部分,作者并对该区自早二叠世以来的构造变动作了分析.  相似文献   

15.
The 102 Ma El Potrero pluton, in the western foothills of Sierra San Pedro Mártir, in north-central Baja California, was emplaced during a long period of contractional deformation bracketed between 132 and 85 Ma that affected this segment of the Peninsular Ranges Batholith. The pluton records regional and emplacement related deformation manifested by: (1) a solid-state fabric developed on its eastern contact, which is produced by eastward lateral pluton expansion; (2) cleavage triple point zones in the host-rock NW and SE of the pluton; (3) subhorizontal ductile shear zones indicative of top-to-the-east transport; (4) magmatic and tectonic foliations parallel to regional structural trends and regional shear zones; (5) variable axial ratios of microgranitoid enclaves close to pluton–wall rock contacts; (6) evidence of brittle-emplacement mechanisms in the western border of the pluton, which contrast with features indicating mainly ductile mechanisms toward the east; and, (7) markedly discordant paleomagnetic directions that suggest emplacement in an active tectonic setting. The overall mean for 9 accepted paleomagnetic sites is Dec = 34.6°, I = 25.7° (k = 88.3, α95 = 5.5°), and is deviated  35° with respect to the reference cratonic direction. This magnetization is interpreted to indicate a combination of tilt due to initial drag during vertical diapiric ascent (or westward lateral-oblique expansion) of the adjacent San Pedro Mártir pluton and later rotation ( 15°) by Rosarito Fault activity in the southwest; this rotation may have occurred as eastward contraction acted to fill the space emptied by the ascending San Pedro Mártir pluton. The Rosarito fault may have tilted several plutons in the area (Sierra San Pedro Mártir, El Potrero, San José, and Encinosa). Magnetic susceptibility fabrics for 13 sites reflect mostly emplacement-related stress and regional stress. Paleomagnetic data and structural observations lead us to interpret the El Potrero pluton as a syntectonic pluton, emplaced within a regional shear zone delimited by the Main Mártir Thrust and the younger Rosarito Fault.  相似文献   

16.
The southern and eastern Karkonosze-Izera massif (northern Bohemian Massif) exposes blueschist facies rocks and MORB-type magmatic complexes. During Late Devonian to Early Carboniferous times, these were overthrust within a nappe pile toward the NW onto the pre-Variscan Saxothuringian basement composed of the Izera-Kowary metagranitoids and their envelope. The lowermost nappe (or parautochthonous?) unit of the pile is the low-grade metamorphosed Jewt3d complex, comprising a Devonian to Early Carboniferous sedimentary succession of the Saxothuringian passive margin. This is tectonically overlain by the South Karkonosze complex, which represents Ordovician-Silurian volcano-sedimentary infill of the Saxothuringian basin, affected by Late Devonian HP metamorphism. The uppermost nappe is the Early Palaeozoic epidote-amphibolite grade Leszczyniec MORB-like complex, cropping out on the eastern margin of the Karkonosze-Izera massif. It probably represents a fragment of obducted Saxothuringian basin floor. The nappe pile was stacked beneath the overriding upper plate margin, now concealed below the Intra-Sudetic basin and hypothesized to represent a fragment of the Tepla-Barrandian terrane. The nappe stacking, triggered by buoyancy-controlled upward extrusion of the subducted continental slab, was the main mechanism for the exhumation of HP rocks. The final stages of the NW-ward nappe stacking were accompanied and followed by SE-directed Early Carboniferous extensional collapse. The lower plate of the suture zone was uplifted at that time and intruded by the ~330-Ma-old, nearly undeformed Karkonosze granite pluton. As a result of the collapse, the Tepla-Barrandian(?) upper plate was downthrown on shear zones and brittle faults and buried under several km-thick synorogenic Late Tournaisian(?) through Namurian and post-orogenic Late Carboniferous-Early Permian succession of the Intra-Sudetic basin. The south and east Karkonosze suture most probably is a fragment of the Tepla/Saxothuringian (Münchberg-Tepla) suture belt known from the western Bohemian Massif.  相似文献   

17.
GEOLOGY OF THE NORTHERN ARUN TECTONIC WINDOW1 BordetP .Recherchesg啨ologiquesdansl’HimalayaduN啨pal,r啨gionduMakalu[R].EditionsduCNRS ,Paris ,196 12 75 . 2 BordetP .G啨ologiedeladalleduTibet (Himalayacentral) [J].M啨moireshorss啨riedelaSociet啨g啨ologiquedeFrance,1977,8:2 35~ 2 5 0 . 3 BurcfielBC ,ChenZ ,HodgesKV ,etal.TheSouthTibetanDetachmentSystem ,Hima…  相似文献   

18.
焉耆盆地博湖坳陷侏罗纪盆地原型存在诸多争论.在参考前人研究基础上,利用地震资料采用层拉平和平衡剖面技术对焉耆侏罗纪原型盆地进行恢复.研究结果表明,盆地在该时期为类前陆盆地.侏罗纪沉积期,博湖坳陷原型盆地主控因素是EW向、NE向和NW向构造.在NS向直压应力作用下,博湖坳陷中间地块向北推移,西部和东部地块分别向西南和东南运移,形成宝浪走滑断裂带、四十里城走滑断裂带和种马场隆起带,控制着坳陷沉积.  相似文献   

19.
东秦岭的地球物理、构造分带特征及演化   总被引:2,自引:1,他引:1  
东秦岭构造演化及地质成矿比较复杂,在认识上还存在分歧.笔者从板块构造学、地球物理学、事件地层学等多学科观点出发,提出了一些新的看法.东秦岭发育的区域性深大断裂主要有9条,它们均具有多期次、长期性活动的特征;垂直板缘构造带走向,从北向南可划分出低变质变形带、强变质变形混杂带、刘岭复理石推褶构造带、大别地块、断褶推滑构造带等五个地质构造带;东秦岭的地质构造发展演化经历了7个阶段,即华北、杨子板块形成、漂移阶段;华南板块形成阶段;板缘增生带形成阶段;板块对接阶段;剪切走滑阶段;板块挤压推覆阶段以及断块掀斜阶段.  相似文献   

20.
酒西盆地南缘晚古生代以来发育的典型冲断—褶皱推覆体隶属于北祁连构造带,自泥盆纪开始,它就拚接于华北板块边缘,成为其一部分,它所经历的构造变迁史是与华北板块紧密相连的,但与塔里木板块却是在二叠纪以后才联合到一起,联合部位在阿尔金断裂带。在伴随华北板块主体一同北向“漂移”的运动中,经历了3次较强烈运动阶段:(1)泥盆纪~石炭纪期间;(2)二叠纪~三叠纪期间;(3)第三纪~第四纪。并有过两个运动和缓时期:石炭纪~二叠纪期间和三叠纪~白垩纪。 推覆体多期推覆作用的发生对酒西盆地基底形态、范围、沉积物类型、有机质演化条件等均具有明显控制作用,进而给油气赋存亦带来极大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号