首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
使用Kanai-Tajimi地震动模型,建立了主动调谐质量阻尼器(ATMD)结构系统的传递函数。将ATMD最优参数的评价准则定义为:设置ATMD结构均方根位移(解析式)的最小值的最小化。将ATMD有效性的评价准则定义为:设置ATMD结构均方根位移的最小值的最小化与未设置ATMD结构的均方根位移之比。根据逃择的评价准则,评价了地震卓越频率系数(EDFR)对ATMD抗震控制性能的影响。同时也评价了EDFR对被动调谐质量阻尼器(PTMD)抗震控制性能的影响。  相似文献   

2.
为研究屋盖开孔对大跨结构风效应的影响,在边界层风洞中开展了大跨开合屋盖刚性模型风洞测压试验,分析了结构表面风荷载分布特征,基于时域分析法研究了屋盖开合对风致响应的影响。结果表明:大跨结构模态密集,第一阶模态能量最大,高阶成分的贡献不容忽视;屋盖开洞能有效的减小屋面风荷载,降低位移响应与加速度响应,减小风振系数。研究结果可为大跨开合屋盖风荷载设计提供参考。  相似文献   

3.
基于Maxwell型阻尼器的多重调谐质量阻尼器性能评价   总被引:1,自引:0,他引:1  
研究了基于Maxwell型阻尼器的多重调谐质量阻尼器(MTD—MTMD)在控制结构地震反应方面的最优动力特性。利用建立的设置MTD-MTMD时结构的传递函数,定义了设置MTD—MTMD时结构的动力放大系数(DMF)。将MTD-MTMD的优化准则定义为结构最大动力放大系数的最小值的最小化(Min.Min.Max.DMF)。利用定义的优化准则,评价了Maxwell型阻尼器的松弛时间系数(RTC)对MTD—MTMD最优参数和有效性的影响。利用最大的MTD—MTMD动力放大系数(DMF),评价了RTC对MTD-MTMD冲程的影响。  相似文献   

4.
研究了非对称结构扭转振动多重调谐质量阻尼器(MTMD)控制的最优位置。本文采用的MTMD具有相同的刚度、阻尼,但质量不同。基于导出的设置MTMD时非对称结构扭转角位移传递函数,建立了扭转角位移动力放大系数解析式。MTMD最优参数的评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化。MTMD的有效性评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化与未设置MTMD时非对称结构最大扭转角位移动力放大系数的比值。基于定义的评价准则,研究了非对称结构的标准化偏心系数(NER)和扭转对侧向频率比(TTFR)对不同位置MTMD最优参数和有效性的影响。  相似文献   

5.
大跨度球面网壳结构应用日趋广泛,其结构特点使风荷载常常起主要甚至是控制作用,风振动力响应研究日益受到关注与重视。本文讨论了网壳结构风振响应时程分析计算方法,并采用节点位移风振系数来衡量网壳结构风振特性。对角锥型双层球面网壳结构进行了不同几何参数即跨度、矢高、球壳厚度等多种情况下的位移风振系数的研究,得出该类网壳的风振系数随几何参数的变化规律,并回归出计算公式,为双层球面网壳结构的抗风设计提供参考。  相似文献   

6.
地震作用下钢框架高层结构的抗震性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邢磊  贾宝新  邢锐 《地震工程学报》2019,41(6):1482-1487
钢框架高层建筑结构是当前高层建筑设计中使用最为广泛的技术,为提升其抗震性能,本文研究将调谐质量阻尼器安装在钢框架高层建筑结构顶部,考虑到建筑空间需求、防止集中荷载和提升控制效果等因素,在相同楼层或同顶部接近楼层中设置数个较小的、频率一致的子控制装置,通过设置调谐质量阻尼器受控结构等效阻尼比求极值的方法,获取最优刚度与最优阻尼系数;将获取的结果在有限元软件中进行模态分析获取模态质量,实现钢框架高层建筑结构扭转振动的减振控制。实验结果表明,地震荷载下,该方法使得建筑结构顶层角位移峰值和角加速度峰值分别降低50%和30%左右,建筑结构响应下降19%~26%,提高了高层建筑结构的稳定性。  相似文献   

7.
为了研究由黏滞阻尼器连接的两相同结构建筑在底部加速度激励下的动态特性,以谐波激励模拟地面加速度,导出耦合系统的运动微分方程,并求解了相对位移和绝对加速度。利用参数法分析激励频率、质量比和刚度比对耦合建筑响应特性的影响。推导出无阻尼系统最佳参数和相应响应的解析表达式。通过研究发现,黏滞阻尼器能够有效控制同结构相邻建筑的动态响应。对于给定的结构和激励,阻尼器的阻尼系数存在最优值能够使谐波激励下的地震动峰值响应最小。耦合结构的阻尼比对最佳阻尼器阻尼没有明显影响,因此所提出的无阻尼结构的解析表达式可用于耦合结构。  相似文献   

8.
基础隔震技术广泛应用于建筑结构以减轻结构的地震响应.值得注意的是,在隔震体系中减小主结构的加速度响应是以牺牲隔震器变形为代价的.调谐惯容系统(TID)和隔震器组成的混合隔震体系可减小隔震层的位移响应.与传统调谐质量阻尼器(TMD)结构类似,TID 由惯容、调谐弹簧和阻尼元件组成.因此,可直接利用 TMD减震系统的设计公式来确定 TID 的最优参数.首先基于单自由度体系(SDOF)附加 TID的运动方程,推导分析两种 TID和 TMD设计公式,对两者设计公式的前提条件和适用性进行深入的探讨.其后,借助基础隔震体系的benchmark模型来检验设计 TID的可行性和有效性.数值模拟结果表明,在不增加主结构绝对加速度响应的情况下, TID能够显著减小基础隔震结构的位移响应和基底剪力.  相似文献   

9.
本文从控制装置实现角度,研究了调谐质量阻尼控制装置的关键技术,其中包括装置的支撑系统、气压弹簧和液压阻尼器。应用这些技术研究了在地王大厦安装HMD装置控制结构风振响应,解决了地王大厦在风荷载作用下总侧移和层间位移角超出我国规范限值的问题。在准确把握结构动力特性和设计准则的前提下,对控制装置的参数进行了设计。系统仿真分析表明,HMD控制装置在地王大厦上应用可以有效降低结构侧向位移。  相似文献   

10.
对典型矩形高层建筑进行风洞试验,根据试验结果计算了各风向角下的等效静风荷载和风振响应,同时采用《建筑结构荷载规范》(GB50009-2012)计算方法对该建筑正交角度下的风荷载进行计算,结合风洞试验风荷载与规范计算结果,研究典型矩形高层建筑等效静风荷载和加速度响应分布规律。结果表明:结构基底风致响应最不利角度并非完全出现在正交角度,风洞试验楼层风荷载整体趋势与规范计算结果相同,数值上存在差异,宜以风洞试验结果为准,该结构的顶层加速度响应小于高规限值,舒适度满足要求。  相似文献   

11.
Active multiple tuned mass dampers (AMTMD) consisting of many active tuned mass dampers (ATMDs) with a uniform distribution of natural frequencies have been, for the first time, proposed for attenuating undesirable vibrations of a structure under the ground acceleration.The multiple tuned mass dampers (MTMD) in the AMTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The control forces in the AMTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the AMTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the AMTMD by conducting a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, total number and normalized acceleration feedback gain coefficient. The criterion, which can be stated as the minimization of the minimum values of the maximum dynamic magnification factors (i.e. Min.Min.Max.DMF), is chosen for the optimum searching. Additionally, for the sake of comparison, the results of the optimum MTMD (the passive counterpart of AMTMD) and ATMD are also taken into account in the present paper. It is demonstrated that the proposed AMTMD can be expected to significantly reduce the oscillations of structures under the ground acceleration. It is also shown that the AMTMD can remarkably improve the performance of the MTMD and has higher effectiveness than ATMD. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Multiple tuned mass dampers (MTMD) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are taken into consideration for attenuating undesirable vibration of a structure under the ground acceleration. A study is conducted to search for the preferable MTMD which performs better and is easily manufactured from the five available models (i.e. MTMD‐1 – MTMD‐5), which comprise various combinations of the stiffness, mass, damping coefficient and damping ratio in the MTMD. The major objective of the present study then is to evaluate and compare the control performance of these five models. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled by adopting the mode reduced‐order approach. The optimum parameters of the MTMD‐1 – MTMD‐5 are investigated to reveal the influence of the important parameters on their effectiveness and robustness using a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, mass ratio and total number. The criteria selected for the optimum searching are the minimization of the maximum value of the displacement dynamic magnification factor (DDMF) and that of the acceleration dynamic magnification factor (ADMF) of the structure with the MTMD‐1 – MTMD‐5 (i.e. Min.Max.DDMF and Min.Max.ADMF). It is demonstrated that the optimum MTMD‐1 and MTMD‐4 yield approximately the same control performance, and offer higher effectiveness and robustness than the optimum MTMD‐2, MTMD‐3, and MTMD‐5 in reducing the displacement and acceleration responses of structures. It is further demonstrated that for both the best effectiveness and robustness and the simplest manufacturing, it is preferable to select the optimum MTMD‐1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.  相似文献   

14.
The optimum parameters of tuned mass dampers (TMD) that result in considerable reduction in the response of structures to seismic loading are presented. The criterion used to obtain the optimum parameters is to select, for a given mass ratio, the frequency (tuning) and damping ratios that would result in equal and large modal damping in the first two modes of vibration. The parameters are used to compute the response of several single and multi-degree-of-freedom structures with TMDs to different earthquake excitations. The results indicate that the use of the proposed parameters reduces the displacement and acceleration responses significantly. The method can also be used in vibration control of tall buildings using the so-called ‘mega-substructure configuration’, where substructures serve as vibration absorbers for the main structure. It is shown that by selecting the optimum TMD parameters as proposed in this paper, significant reduction in the response of tall buildings can be achieved. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
用主动调频质量阻尼器控制高层建筑的风致振动   总被引:5,自引:1,他引:4  
本文提出了用于高层建筑风振动控制的主动调频质量阻尼器(ATMD)设计的一种简单方法。从TMD的工作原理出发,在物理意义上显式定义主动控制力的构成,基于结构的SDOF模型和广义脉动风力的高斯白噪声假定,在频域的以最小化结构顶层位移方差为设计目标,对控制力增益进行参数优化,得出控制力增益的封闭解,文中提出了以维持TMD行程恒定为目标进行参数选择的设计方案,一超高层建筑作为算例给出,数值分析表明,所设计  相似文献   

16.
An Erratum has been published for this article in Earthquake Engineering and Structural Dynamics 2003; 32(15):2451. Multiple active–passive tuned mass dampers (MAPTMD) consisting of many active–passive tuned mass dampers (APTMDs) with a uniform distribution of natural frequencies have been, for the first time here, proposed for attenuating undesirable oscillations of structures under the ground acceleration. The MAPTMD is manufactured by keeping the stiffness and damping coefficient constant and varying the mass. The control forces in the MAPTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the MAPTMD (i.e. through implementation of Min.Min.Max.DMF), the optimum parameters of the MAPTMD are investigated to delineate the influence of the important parameters such as mass ratio, total number, normalized acceleration feedback gain coefficient and system parameter ratio on the effectiveness (i.e. Min.Min.Max.DMF) and robustness of the MAPTMD. The optimum parameters of the MAPTMD include the optimum frequency spacing, average damping ratio and tuning frequency ratio. Additionally, for the sake of comparison, the results for a single APTMD are also taken into account in the present paper. It is demonstrated that the proposed MAPTMD can be employed to significantly reduce the oscillations of structures under the ground acceleration. Also, it is shown that the MAPTMD can render high robustness and has better effectiveness than a single APTMD. In particularly, if and when requiring a large active control force, MAPTMD is more promising for practical implementations on seismically excited structures with respect to a single APTMD. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The newly proposed mega sub-controlled structure system(MSCSS) and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of mega frame structures. However, there is still a need for improvement to its basic structural arrangement. In this project, an advanced, reasonable arrangement of mega sub-controlled structure models, composed of three mega stories with different numbers and arrangements of substructures, are designed to investigate the control performance of the models and obtain the optimal model configuration(model with minimum acceleration and displacement responses) under strong earthquake excitation. In addition, the dynamic parameters that affect the performance effectiveness of the optimal model of MSCSS are studied and discussed. The area of the relative stiffness ratio RD, with different mass ratio MR, within which the acceleration and displacement of the optimal model of MSCSS reaches its optimum(minimum) value is considered as an optimum region. It serves as a useful tool in practical engineering design. The study demonstrates that the proposed MSCSS configuration can efficiently control the displacement and acceleration of high rise buildings. In addition, some analytical guidelines are provided for selecting the control parameters of the structure.  相似文献   

18.
Multiple tuned mass dampers (MTMDs) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the MTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the MTMD by conducting a numerical searching technique in two directions. The parameters include: the frequency spacing, average damping ratio, mass ratio and total number. The criterion selected for the optimization is the minimization of the maximum value of the dynamic magnification factor (DMF) of the structure with MTMD (i.e. Min.Max.DMF). In this paper, for the sake of comparison, the MTMD(II), which is made by keeping the mass constant and varying the stiffness and damping coefficient, and a single TMD are also taken into account. It is demonstrated that the optimum frequency spacing of the MTMD is the same as that of the MTMD(II) and the optimum average damping ratio of the MTMD is a little larger than that of the MTMD(II). It is also found that the optimum MTMD is more effective than the optimum MTMD(II) and the optimum single TMD with equal mass. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号