首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2009年1月在南海北部海域的5个站位,采用稀释法和显微分析技术研究了浮游植物生长率及微型浮游动物对浮游植物的摄食压力,同时测定了微型浮游动物的丰度及类群组成.结果表明:南海北部微型浮游动物类群主要以无壳纤毛虫为主,南海北部微型浮游动物类群细胞丰度为33~529个/dm3.南海北部浮游植物生长率为0.45~1.83 d-1,微型浮游动物摄食率为0.44~1.76 d-1,摄食压力占浮游植物现存量的42.6%~82.8%,占初级生产力的97.3%~225.1%.近岸区摄食压力比陆架区高,表明冬季南海近岸区微型浮游动物摄食能够有效的控制浮游植物的生长,而陆架区浮游植物生长率大于摄食率,浮游植物存在着现存量的积累,微型浮游动物并不能完全控制浮游植物的生长.  相似文献   

2.
南海北部秋季微型浮游动物摄食和种类组成的初步研究   总被引:4,自引:0,他引:4  
2004年9月到10月间在南海北部海区对微型浮游动物的种类组成进行了调查,同期运用现场稀释法,以叶绿素a为监测对象,估计了该海区内微型浮游动物摄食率和摄食压力的水平。结果表明,南海北部海区纤毛虫群体中以多膜纲寡毛目为主,有16种,其中寡毛亚目纤毛虫4种,砂壳亚目纤毛虫11种。各站纤毛虫丰度比较低,在9~102ind/m3之间。浮游植物瞬时增长率(k)在0.03/d~2.13/d之间;微型浮游动物的摄食率(g)在0.01/d~1.06/d之间。微型浮游动物对浮游植物现存量的摄食压力(Pi)在0.089%~65.23%之间,对初级生产力的摄食压力(Pp)在33.63%~86.04%之间。微型浮游动物的摄食水平主要受其丰度的影响,同时微型浮游动物对浮游植物现存量和初级生产力的摄食压力显示,在南海北部海区微型浮游动物在初级生产力传递方面具有重要的科学意义和研究价值。  相似文献   

3.
Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5–20, 20–200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5–20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63–5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

4.
2000年秋季(10月21日-11月7日)和2001年春季(4月30日-5月15日)用稀释培养法在黄海和东海测定了微型浮游动物对浮游植物的摄食,结果表明:(1)秋季表层浮游植物叶绿素α(Chl α)的内禀生长率为0.40~0.59 d<'-1>,微型浮游动物对Chl α的摄食率为0.21~0.63 d<'-1>,对Ch...  相似文献   

5.
Using the seawater dilution technique, we measured phytoplankton growth and microzooplankton grazing rates within and outside of the 1999 Bering Sea coccolithophorid bloom. We found that reduced microzooplankton grazing mortality is a key component in the formation and temporal persistence of the Emiliania huxleyi bloom that continues to proliferate in the southeast Bering Sea. Total chlorophyll a (Chl a) at the study sites ranged from 0.40 to 4.45 μg C l−1. Highest phytoplankton biomass was found within the bloom, which was a mixed assemblage of diatoms and E. huxleyi. Here, 75% of the Chl a came from cells >10 μm and was attributed primarily to the high abundance of the diatom Nitzschia spp. Nutrient-enhanced total phytoplankton growth rates averaged 0.53 d−1 across all experimental stations. Average growth rates for >10 μm and <10 μm cells were nearly equal, while microzooplankton grazing varied among stations and size fractions. Grazing on phytoplankton cells >10 μm ranged from 0.19 to 1.14 d−1. Grazing on cells <10 μm ranged from 0.02 to 1.07 d−1, and was significantly higher at non-bloom (avg. 0.71 d−1) than at bloom (avg. 0.14 d−1) stations. Averaged across all stations, grazing by microzooplankton accounted for 110% and 81% of phytoplankton growth for >10 and <10 μm cells, respectively. These findings contradict the paradigm that microzooplankton are constrained to diets of nanophytoplankton and strongly suggests that their grazing capability extends beyond boundaries assumed by size-based models. Dinoflagellates and oligotrich ciliates dominated the microzooplankton community. Estimates of abundance and biomass for microzooplankton >10 μm were higher than previously reported for the region, ranging from 22,000 to 227,430 cells l−1 and 18 to 164 μg C l−1. Highest abundance and biomass occurred in the bloom and corresponded with increased abundance of the large ciliate Laboea, and the heterotrophic dinoflagellates Protoperidinium and Gyrodinium spp. Despite low grazing rates on phytoplankton <10 μm within the bloom, the abundance and biomass of small microzooplankton (<20 μm) capable of grazing E. huxleyi was relatively high at bloom stations. This body of evidence, coupled with observed high grazing rates on large phytoplankton cells, suggests the phytoplankton community composition was strongly regulated by herbivorous activity of microzooplankton. Because grazing behavior deviated from size-based model predictions and was not proportional to microzooplankton biomass, alternate mechanisms that dictate levels of grazing activity were in effect in the southeastern Bering Sea. We hypothesize that these mechanisms included morphological or chemical signaling between phytoplankton and micrograzers, which led to selective grazing pressure.  相似文献   

6.
In order to investigate the parameters controlling the heterotrophic protists (nano-microzooplankton) on the continental shelf of the southern Bay of Biscay, plankton communities and their physico-chemical environment were studied 4 times in February, April, June and September–October 2004 at three stations in the euphotic zone in the Bay of Biscay. The abundance and carbon biomass of heterotrophic protists (ciliates, heterotrophic dinoflagellates and nanoflagellates) as well as all the others groups of plankton (picoplankton, nanophytoplankton, diatoms, autotrophic dinoflagellates, metazoan microzooplankton and mesozooplankton), the environmental parameters and the primary and bacteria production were evaluated at each sampling period. Microzooplankton grazing experiments were undertaken at the same time. Ciliates and heterotrophic dinoflagellates accounted for the main major component of nano- and microzooplankton communities in term of biomass. The total carbon biomass of heterotrophic protists was highest in spring and lowest at the end of summer. The development of heterotrophic protists started after a winter microphytoplankton bloom (principally large diatoms), the biomass was lower in June and was low in September (through inappropriate prey). The carbon requirement of microzooplankton ranged from 50 to more than 100% of daily primary, bacterial and nanoflagellate production. The heterotrophic protist community was predominantly constrained by bottom-up control in spring and at the end of summer via food availability and quality.  相似文献   

7.
The source and significance of two nutrients, nitrogen and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay, in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the internal and external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d-1 outside the bay, 0.42 and 0.32 d-1 inside the bay and 0.98 and 0.62 d-1 in the harbor respectively. Outside the bay, the remineralized nitrogen (Kr=24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(Kr=3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (Kr=3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.  相似文献   

8.
Phytoplankton growth and microzooplankton grazing were studied during the 2007 spring bloom in Central Yellow Sea. The surveyed stations were divided to pre-bloom phase (Chl a concentration less than 2 μg L−1), and bloom phase (Chl a concentration greater than 2 μg L−1). Shipboard dilution incubation experiments were carried out at 19 stations to determine the phytoplankton specific growth rates and the specific grazing rates of microzooplankton on phytoplankton. Diatoms dominated in the phytoplankton community in surface waters at most stations. For microzooplankton, Myrionecta rubra and tintinnids were dominant, and heterotrophic dinoflagellate was also important in the community. Phytoplankton-specific growth rates, with an average of 0.60±0.19 d−1, were higher at pre-bloom stations (average 0.62±0.17 d−1), and lower at the bloom stations (average 0.59±0.21 d−1), but the difference of growth rates between bloom and pre-bloom stations was not statistically significant (t test, p=0.77). The phytoplankton mortality rate by microzooplankton grazing averaged 0.41±0.23 d−1 at pre-bloom stations, and 0.58±0.31 d−1 during the blooms. In contrast to the growth rates, the statistic difference of grazing rates between bloom and pre-bloom stations was significant (after removal of outliers, t test, p=0.04), indicating the importance of the top-down control in the phytoplankton bloom processes. Average potential grazing efficiency on primary productivity was 66% at pre-bloom stations and 98% at bloom stations, respectively. Based on our results, the biomass maximum phase (bloom phase) was not the maximum growth rate phase. Both phytoplankton specific growth rate and net growth rate were higher in the pre-bloom phase than during the bloom phase. Microzooplankton grazing mortality rate was positively correlated with phytoplankton growth rate during both phases, but growth and grazing were highly coupled during the booming phase. There was no correlation between phytoplankton growth rate and cell size during the blooms, but they were positive correlated during the pre-bloom phase. Our results indicate that microzooplankton grazing is an important process controlling the growth of phytoplankton in spring bloom period in the Central Yellow Sea, particularly in the “blooming” phase.  相似文献   

9.
于2005年3月对黄海海域的7个站位应用稀释法研究了浮游植物的生长率和微型浮游动物对浮游植物的摄食压力。结果表明:实验期间,微型浮游动物生长速率范围在0.34~0.95d-1,浮游植物摄食速率范围在0.44~0.94d-1。微型浮游动物对浮游植物的现存量和初级生产力的摄食压力分别为47.76%~63.80%和61.50...  相似文献   

10.
Microzooplankton (heterotrophic microplankton and heterotrophic nanoflagellates) and their herbivorous activity were estimated from dilution experiments in August 1998 during two Lagrangian drift experiments that sampled contrasting conditions—an upwelling/relaxation event along the shelf edge and an oligotrophic offshore filament. During upwelling/relaxation, heterotrophic microplankton were present at mean surface concentrations between 15,000 and 48,000 cells l−1. Heterotrophic nanoflagellate concentrations were between 200 and 700 cells ml−1 and the most abundant component of the heterotrophic microplankton was the aloricate choreotrich ciliates which increased dramatically in concentration from 6,000 to 24,000 cells l−1 during the first 4 days of the study. Total microzooplankton biomass reached a maximum of 39mgC.m−3. In the filament, which developed from the upwelling, cell concentrations were lower and averaged 4,500 cells l−1 for heterotrophic microplankton and 250 cells ml−1 for heterotrophic nanoflagellates. Total microzooplankton biomass was about 10–12mgC.m−3. Microzooplankton turned over between 40 and 85% of the phytoplankton standing stock, thereby consuming between 5 and 78mg phytoplankton carbon.m−3.d−1. The magnitude of this activity was highest during upwelling/relaxation and was positively correlated to heterotrophic nanoflagellate biomass and chlorophyll-a concentration but not heterotrophic microplankton biomass. The proportion of primary production grazed decreased from 160 to 59% d−1 during upwelling/relaxation and ranged between 60 and 90% d−1 in the filament. Microzooplankton herbivory within the euphotic zone increased from 684 to >2000mgC.m−2.d−1 during upwelling/relaxation and was between 327 and 802mgC.m−2.d−1 in the filament. Although microzooplankton herbivory was lower and less variable during the filament study, microzooplankton consumed on average 60% of the phytoplankton standing stocks which was higher than found during upwelling/relaxation. Microzooplankton assimilation efficiency ranged between 3 and 33% during upwelling/relaxation and between 0 and 13% in the filament. Our data demonstrate a close coupling between phytoplankton growth and microzooplankton herbivory in surface waters off the Galician Coast and suggest that microzooplankton may have been a significant sink for phytogenic carbon during August 1998.  相似文献   

11.
The relationships between the spatiotemporal variation in phytoplankton community structure and environmental variables were investigated in the Kuroshio Extension (KE) region from winter to spring by analysing biomarker pigments. In winter, when the mixed layer was deep, phytoplankton communities were characterised by low biomass and a relatively high dominance of cryptophytes, followed by chlorophytes and pelagophytes. In spring, phytoplankton biomass generally increased with shoaling of the mixed layer. In April, when nitrate was not exhausted, chlorophytes became the most dominant group throughout the KE region, followed by cryptophytes. In May, in the south of the KE, phytoplankton biomass decreased with the depletion of nitrate and cyanobacteria dominated, whereas at the northern edge of the KE, phytoplankton biomass remained high. A predominance of diatoms occurred sporadically at the northern edge of the first ridge with a shallow mixed layer and an elevated nutricline. In contrast, the contribution of diatoms was low at the northern edge of the second ridge, despite high levels of nitrate and silicic acid, suggesting that factors other than macronutrient depletion limited diatom production. In general, the contribution of diatoms to the total phytoplankton biomass in the KE region was small in both winter (2.9%) and spring (16%). This study showed that the phytoplankton communities in the KE region during the spring bloom were generally composed of non-diatom phytoplankton groups, chlorophytes, cryptophytes, and prasinophytes. It is necessary to identify the roles of non-diatoms in grazing food chains to more accurately evaluate the KE as a nursery area for pelagic fish.  相似文献   

12.
A sequence of nine dilution experiments was conducted according to Landry and Hassett [Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67, 283–288] in the northern Wadden Sea from March until October 2004 to investigate the seasonality of microzooplankton grazing. From March until April, no grazing was observed. Microzooplankton grazing started in May (0.66 d− 1) and increased until August (1.22 d− 1). In October microzooplankton grazing was low again (0.17 d− 1). Phytoplankton growth rates varied between 0 and 1.1 d− 1. Since the reliability of dilution experiments is still frequently discussed in literature, we tested if our data obtained by dilution experiments reflected short-term in situ phytoplankton dynamics of the study site. We scaled experimental growth rates to water column irradiance, calculated short-term chlorophyll-a dynamics and compared the results to in situ measured chlorophyll-a concentrations. Calculated chlorophyll-a concentrations correlated significantly with in situ measured chlorophyll-a concentrations but slightly overestimated the in situ measured chlorophyll-a. This overestimation was in the range of phytoplankton assimilation reported for the Wadden Sea benthos. We will show that microzooplankton grazing had a large impact during the Phaeocystis bloom and during summer suggesting that a large proportion of phytoplankton biomass remained the pelagic food web. Microzooplankton grazing did not impact the diatom spring bloom and its demise.  相似文献   

13.
曾祥波  黄邦钦 《海洋学报》2008,30(6):140-146
为了研究小型浮游动物对近岸浮游植物藻华的摄食调控作用,于2005年7月,应用"稀释法"并结合高效液相色谱(HPLC)光合色素分析技术,研究了台湾海峡船基围隔实验条件下浮游植物生长率及小型浮游动物摄食率的日变动。结果表明:由于营养盐添加的影响,迅速形成了以尖刺伪菱形藻(Pseudo-nitzschia pungens)为优势种的藻华,生物量(叶绿素a)从实验初始7月6日的1.45μg/dm3迅速增加到7月8日的29.80μg/dm3,随后消退。镜检和光合色素分析的结果显示,实验期间一直以此硅藻占绝对优势。浮游植物的生长率在藻华峰值(7月8日)前保持了较高的生长速率(>1.0/d)且大于小型浮游动物的摄食率;小型浮游动物的摄食率也逐渐增加,7月7日时达到0.86/d,显示有57%以上的浮游植物现存量被摄食。7月8日后,水华迅速消退,摄食率除13日外,均大于浮游植物的生长率。小型浮游动物主要由急游虫(Strombidium spp.)、侠盗虫(Strobilidium spp.)等无壳纤毛虫、异养甲藻-螺旋环沟藻(Gyrodinium spirale)及砂壳纤毛虫等组成,其对浮游植物的生长迅速作出了反应,各类群的丰度在水华峰值后的7月9日均几达最大值,水华后期(11日)大型的无壳纤毛虫达最大值。小型浮游动物的这种组成及变动特点是其保持较高摄食率及一定程度上控制和促进藻华消退的原因之一。  相似文献   

14.
1 Introduction Phytoplankton has been considered as a dom inantprim ary producer in m arine ecosystem s, starting them arine food chain (N ing and V aulot.,2003;Sun etal.,2001; Zhu et al., 2000; N ing and V aulot, 1992). A l-though potentialfates ofphytoplankton include advec-tion,verticalm ixing,sinking and m ortality due to virallysis and grazing (B anse,1994),m ortality due to graz-ing,especially by m icrozooplankton,is generally con- μm m esh to 25-L carboys, then transpo…  相似文献   

15.
台湾海峡小型浮游动物的摄食对夏季藻华演替的影响   总被引:3,自引:2,他引:3  
于2004年8月1~6日对台湾海峡南部近岸的藻华过程进行了定点连续跟踪观测,用稀释法研究了浮游植物的生长率和小型浮游动物对浮游植物的摄食死亡率,同时运用高效液相色谱(HPLC)技术,分析了浮游植物不同光合色素类群的生长率和摄食死亡率.结果表明,观测期间处于藻华的消退期.8月1日时,浮游植物生物量(叶绿素a)和丰度分别为2.04μg/dm3和2.99×105个/dm3,主要优势种为尖刺伪菱形藻(Pseudo-nitzschia pungens)、冰河拟星杆藻(Asterionellopsis glacialis)和中肋骨条藻(Skeletonema costatum),8月6日时,浮游植物生物量和丰度分别减为0.37μg/dm3和1.54×104个/dm3;而蓝藻和甲藻的丰度和比例则呈现出逐渐增加的趋势,所占的比重分别从1日的0.04%和0.85%增加到6日的9.59%和41.97%.小型浮游动物主要由无壳纤毛虫、砂壳纤毛虫、红色中缢虫(Mesodinium rubrum)和异养甲藻等类群组成,总丰度于8月2日达到最大值,为3640个/dm3,之后逐渐减少,6日时,仅为436个/dm3.观测期间,小型浮游动物在群落组成上虽一直以无壳纤毛虫和异养甲藻为主,但在具体的类群结构上却表现出了一定的差异,30μm以下的无壳纤毛虫和异养甲藻总体呈下降的趋势,而红色中缢虫、砂壳纤毛虫和大于50μm的无壳纤毛虫总体呈增加的趋势.观测期间,浮游植物的生长率为0.40~0.91d-1,小型浮游动物的摄食率为0.26~1.34d-1,摄食率和生长率总体呈逐渐下降的趋势.结果还表明,小型浮游动物的摄食率与叶绿素a具有很好的相关性(R2=0.89),对各光合色素类群的现存量和初级生产力均具有较高的摄食压力(分别为37.97%~82.24%和70.71%~281.33%),是藻华消亡的重要原因之一;此外,小型浮游动物对甲藻和蓝藻的避食行为,可能是观测期间由“硅藻”水华向“硅藻-甲藻”水华转变的重要原因之一.  相似文献   

16.
Microzooplankton species composition and grazing rates on phytoplankton were investigated along a transect between ∼46 and 67°S, and between 140 and 145°E. Experiments were conducted in summer between November 2nd and December 14th in 2001. The structure of the microbial food web changed considerably along the transect and was associated with marked differences in the physical and chemical environment encountered in the different water masses and frontal regions. On average microzooplankton grazing experiments indicated that 91%, 102%, and 157%, (see results) of the phytoplankton production would be grazed in the <200, <20 and <2 μm size fractions, respectively, indicating microzooplankton grazing was potentially constraining phytoplankton populations (<200 μm) along most of the transect. Small ciliates in general and especially oligotrich species declined in importance from the relatively warm, Southern Subtropical Front waters (6.8 μg C/L) to the colder waters of the southern branch of the Polar Front (S-PF), (∼0.5 μg C/L) before increasing again near the Antarctic landmass. Large changes in microzooplankton dominance were observed, with heterotrophic nanoflagellates (HNF), ciliates and larger dinoflagellates having significant biomass in different water masses. HNF were the dominant grazers when chlorophyll a was low in areas such as the Inter-Polar Frontal Zone (IPFZ), while in areas of elevated biomass such as the S-PF and Southern Antarctic Circumpolar Current (SACC), a mix of copepod nauplii and large heterotrophic and mixotrophic dinoflagellates tended to dominate the grazing community. In the S-PF and SACC water masses the tight coupling observed between the microzooplankton grazers and phytoplankton populations over most of the rest of the transect was relaxed. In these regions grazing was low on the >20 μm size fraction of chlorophyll a, which dominated the biomass, while smaller diatoms and nanoplankton in the <20 μm size fraction were still heavily grazed. The lack of grazing pressure on large phytoplankton contributes to this region's potential to export carbon with larger cells known to have higher sinking rates.  相似文献   

17.
通过对山东省靖海湾海蜇养殖港塭定期采样,采用稀释法研究该海蜇养殖港塭水体中浮游植物的生长率、微型浮游动物对浮游植物的摄食率、摄食压力以及微型浮游动物的生产力。研究结果表明,海蜇养殖港塭微型浮游动物组成比较简单,海蜇养殖期间微型浮游动物丰度低于海蜇捕捞结束期。其中,海蜇养殖期间微型浮游动物的优势种为根状拟铃虫(Tintinnopsis radix),为600~2 600 ind/L,而海蜇捕捞结束后优势种为根状拟铃虫、诺氏麻铃虫(Leprotintinnus nordquisti)和运动类铃虫(Codonellopsis mobilis),丰度分别为3 000~6 000、1 500~3 0001、500~3 000 ind/L。研究期间,该港塭浮游植物生长率为0.05~1.03 d-1。微型浮游动物的摄食率为0.24~2.37 d-1,对浮游植物现存量的摄食压力为21.10%~90.61%,对潜在初级生产力的摄食压力为77.08%~583.68%,而微型浮游动物的次级生产力占初级生产力的22.92%~76.92%。本研究表明微型浮游动物在海蜇养殖港塭生态系统物质和能量流动中起着重要作用。  相似文献   

18.
Abstract. Microzooplankton grazing and protozooplankton community structure was investigated in austral summer (Jan./Feb.) and winter (June/July) 1993 in the Atlantic sector of the Southern Ocean during the SAAMES (South African Antarctic Marine Ecosystem Study) Il and III cruises. Grazing was estimated at 22 stations in summer and at 15 stations in winter by employing the sequential dilution technique. Nano-heterotrophic flagellates (< 20 μm) and ciliates (aloricate ciliates and tintinnids) dominated the protozooplankton assemblages along both transects. Densities in winter were, however, nearly an order of magnitude lower than in summer. Microzooplankton grazing removed between 0 and 28% (mean = 13.2%) of the initial phytoplankton stock in summer and, between 24 and 51 % of the initial stock (mean = 37.6%) in winter. The potential primary production removed during summer ranged between 0 and 46% (mean = 22.0%) compared with the winter range of 56–83% (mean = 67.2%). Size selectivity grazing experiments conducted during both studies suggest that microzooplankton preferentially graze on the nano- (20–2.0μm) and picophytoplankton (2.0–0.2μm) size fractions. These results have important implications for the efficiency of the carbon pump in the Southern Ocean. During summer when the larger cells dominate phytoplankton biomass, the bulk of the photosynthetically fixed carbon appears to be channelled to the meso- and macrozooplankton fractions. This results in a rapid transfer of organic carbon out of the zone of regeneration to the deep ocean via vertical migration and large faecal pellet production. During winter, however, an increase in the contribution of the smaller size fractions to total phytoplankton biomass results in a greater proportion of the photosynthetically fixed carbon being channelled to the microzooplankton fraction. The efficiency of the carbon pump is, therefore, reduced in that the transfer of carbon below the zone of regeneration is reduced as carbon is recycled mostly within the microbial loop in the upper mixed layer.  相似文献   

19.
Microplankton abundances and phytoplankton mortality rates were determined at six stations during four cruises spanning three seasons in the Ross Sea polynya, Antarctica (early spring, Oct.–Nov. 1996; mid-late summer, Jan.–Feb. 1997; fall, Apr. 1997; mid-late spring, Nov.–Dec. 1997). Rates of microzooplankton herbivory were measured using a modified dilution technique, as well as by examining the rate of disappearance of phytoplankton (chlorophyll) in samples incubated in the dark (i.e. grazing in the absence of phytoplankton growth). Strong seasonal cycles of phytoplankton and microzooplankton abundance were observed during the study. Microzooplankton abundance varied by more than three orders of magnitude during the four cruises, and was positively correlated with phytoplankton biomass over the entire data set. Nevertheless, microzooplankton grazing was insufficient to impact significantly phytoplankton standing stocks during most of the experiments performed in this perenially cold environment. Only thirteen out of a total of 51 experiments yielded phytoplankton mortality rates that were significantly different from zero. The highest mortality rate observed in this study (0.26 d−1) was modest compared with maximal rates that have been observed in temperate and tropical ecosystems. Results from twenty experiments examining the rate of decrease of phytoplankton biomass during incubations in the dark agreed quite well with the results of the dilution experiments performed at the same time. The range of mortality rates for the dark incubations was −0.09–0.06 d−1, and the average was essentially zero (−0.01 d−1). That is, chlorophyll concentration was virtually unchanged in samples incubated in the dark for 3 d. A number of factors appeared to contribute to the very low rates of microbial herbivory observed, including low water temperature, and the size and taxonomic composition of the phytoplankton assemblage. Based on our results we conclude that the seasonal, massive phytoplankton blooms observed in the Ross Sea are due, in part, to low rates of removal by microbial herbivores.  相似文献   

20.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号