首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》2006,21(9):1593-1612
Sediments, mosses and algae, collected from lake catchments of the Larsemann Hills, East Antarctica, were analysed to establish baseline levels of trace metals (Ag, As, Cd, Co, Cr, Cu, Ni, Sb, Pb, Se, V and Zn), and to quantify the extent of trace metal pollution in the area. Both impacted and non-impacted sites were included in the study. Four different leaching solutions (1 M MgCl2, 1 M CH3COONH4, 1 M NH4NO3, and 0.3 N HCl) were tested on the fine fraction (<63 μm) of the sediments to extract the mobile fraction of trace metals derived from human impact and from weathering of basement lithologies. Results of these tests indicate that dilute HCl partly dissolves primary minerals present in the sediment, thus leading to an overestimate of the mobile trace metal fraction. Concentrations of trace metals released using the other 3 procedures indicate negligible levels of anthropogenic contribution to the trace metal budget. Data derived from this study and a thorough characterisation of the site allowed the authors to define natural baseline levels of trace metals in sediments, mosses and algae, and their spatial variability across the area. The results show that, with a few notable exceptions, human activities at the research stations have contributed negligible levels (lower than natural variability) of trace metals to the Larsemann Hills ecosystem. This study further demonstrates that anthropogenic sources of trace metals can be correctly identified and quantified only if natural baselines, their variability, and processes controlling the mobility of trace metals in the ecosystem, have been fully characterised.  相似文献   

2.
Active and abandoned mine activities constitute the sources of deterioration of water and soil quality in many parts of the world, particularly in the African Copperbelt regions. The accumulation in soils and the release of toxic substances into the aquatic ecosystem can lead to water resources pollution and may place aquatic organisms and human health at risk. In this study, the impact of past mining activity (i.e., abandoned mine) on aquatic ecosystems has been studied using ICP-MS analysis for trace metals and Rare Earth Elements (REE) in sediment samples from Lubumbashi River (RL) and Tshamilemba Canal (CT), Katanga, Democratic Republic of the Congo (DRC). Soil samples from surrounding CT were collected to evaluate trace metal and REE concentrations and their spatial distribution. The extent of trace metal contamination compared to the background area was assessed by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Additionally, the trace metal concentrations probable effect levels (PELs) for their potential environmental impact was achieved by comparing the trace metal concentrations in the sediment/soil samples with the Sediment Quality Guidelines (SQGs). Spearman's Rank-order correlation was used to identify the source and origin of contaminants. The results highlighted high concentrations of trace metals in surface sediments of CT reaching the values of 40152, 15586, 610, 10322, 60704 and 15152 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. In the RL, the concentrations reached the values of 24093, 2046, 5463, 3340, 68290 and 769 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. The ΣREE varied from 66 to 218 and 142–331 mg kg−1 for CT and RL, respectively. The soil samples are characterized by variable levels of trace metals. The EF analysis showed “extremely severe enrichment” for Cu and Co. However, no enrichment was observed for REE. Except for Mo, Th, U, Eu, Mo, Ho and Tm for which Igeo is classified as “moderately polluted and/or unpolluted”, all elements in different sites are classified in the class 6, “extremely polluted”. The trace metal concentrations in all sampling sites largely exceeded the SQGs and the PELs for the Protection of Aquatic Life recommendation. Cu and Co had positive correlation coefficient values (r = 0.741, P < 0.05, n = 14). This research presents useful tools for the evaluation of water contamination in abandoned and active mining areas.  相似文献   

3.
《Applied Geochemistry》2006,21(7):1240-1247
This paper reports the abundance of elemental S in drain sediments associated with acid sulfate soils. The sediments exhibited near-neutral pH (5.97–7.27), high concentrations of pore-water Fe2+ (1.37–15.9 mM) and abundant oxalate-extractable Fe (up to 4300 μmol g−1). Maximum acid-volatile sulfide (AVS) concentrations in each sediment profile were high (118–1019 μmol g−1), with AVS often exceeding pyrite-S. Elemental S occurred at concentrations of 13–396 μmol g−1, with the higher concentrations exceeding previous concentrations reported for other sedimentary systems. Up to 62% of reduced inorganic S near the sediment/water interface was present as elemental S, due to reaction between AVS and oxidants such as O2 and Fe(III). Significant correlation (r = 0.74; P < 0.05) between elemental S and oxalate-extractable Fe(III) is indicative of elemental S formation by in situ oxidation of AVS. The results indicate that AVS oxidation in near-surface sediments is dynamic in acidified coastal floodplain drains, causing elemental S to be a quantitatively important intermediate S fraction. Transformations of elemental S may therefore strongly influence water quality in ASS landscapes.  相似文献   

4.
Mercury concentrations were determined in stream sediments from the Camaquã River Basin, located in the shield region of the state of Rio Grande do Sul, southern Brazil. The resulting geochemical data show that overbank floodplain deposits exhibit higher concentrations than sediments collected from the active channel bed. In addition, higher Hg concentrations were measured in the fine(<63 μm) sediment fraction of the samples. Total Hg concentrations in the fine fraction of active stream sediments from Lavras do Sul County, which have been influenced by past gold mining activities, have decreased during the last five years to values ≤142 ng g−1. However, in a settling pond containing abandoned mine wastes, the Hg concentration of a bulk sample remained exceptionally high (5220 ng g−1). Preliminary speciation results show that Hg0 is the predominant species in most of the samples. This was the form of Hg released by the gold amalgamation activities in the area, and appears to be relatively stable under the existing Eh and pH conditions.  相似文献   

5.
《Applied Geochemistry》1998,13(3):293-304
Distributions of 15 elements with depth in two sediment cores from Puck Bay in the Gulf of Gdansk show that Ag, Cd, Pb, Zn and possibly Cu and Ni are anthropogenically enriched in the sediments there. The concentrations of these elements decrease sharply with depth in the sediment column and the elements are preferentially enriched in the <2 μm size fraction of the sediment. The sequence of element enrichment depends on whether the enrichment factor (EF) and the anthropogenic factor (AF) are used to calculate the element enrichment. By contrast, the anthropogenic elements show no systematic decrease in concentration with depth in a sediment core taken from near the mouth of the Vistula River. This reflects the higher sedimentation rate there such that the entire upper 20 cm of the core was deposited during the major, post-war period of industrialization in Poland. In addition, these elements are enriched in the 2–63 μm fraction compared to the <2 μm fraction in these sediments. This suggests that the heavy metals are mainly adsorbed on Fe oxyhydroxide particles with diameters greater than 2 μm at the hydrological front where Vistula river water mixes with brackish Baltic water. It appears that heavy-metal pollution of sediments in parts of Puck Bay may be greater than that near the mouth of the Vistula River which may reflect, in part, the higher sedimentation rate near the mouth of the Vistula River. The mode of incorporation of heavy-metals into the sediments in the two areas may also be different.  相似文献   

6.
《Applied Geochemistry》2006,21(10):1760-1780
Sulfide-rich mine tailings in Adak that are exposed to weathering cause acid mine drainage characterized by low pH (2–4) and high SO4 (up to 800 mg L−1). Surface water, sediment and soil samples collected in this study contain higher concentrations of As, Cu, Fe and Zn, compared to the target and/or intervention limits set by international regulatory agencies. In particular, high As concentrations in water (up to 2900 μg L−1) and sediment (up to 900 mg kg−1) are of concern. There is large variability in trace element concentrations, implying that both physical (grain size) and chemical factors (pH, secondary phases as sulfides, Al-oxides or clay minerals) play an important role in their distribution. The low pH keeps the trace elements dissolved, and they are transported farther downstream. Trace element partition coefficients are low (log Kd = 0.3–4.3), and saturation indices calculated with PHREEQC are <0 for common oxide and sulfidic minerals. The sediment and soil samples indicate an enhanced pollution index (up to 17), and high enrichment factors for trace elements (As up to 38,300; Zn up to 800). Finally, leaves collected from different plant types indicate bioaccumulation of several elements (As, Al, Cu, Fe and Zn). However, some of the plants growing in this area (e.g., Salix, Equisétum) are generally resistant to metal toxicity, and hence, liming and phytoremediation could be considered as potential on-site remediation methods.  相似文献   

7.
Ethane and propane are low molecular weight hydrocarbons observed widely at trace levels in cold marine sediments where thermogenic sources are considered insignificant, but their biological sources remain poorly constrained. In this study, several C2 and C3 compounds including alkenes, alcohols, thiols and carboxylic acids with a C2 or C3 skeleton were tested for their relative alkane-producing potential in an anoxic estuary sediment. Maximum conversion efficiency of substrates to ethane or propane was observed in the sediment supplemented with ethylene (up to 38%), followed by additions with ethanethiol (0.01%) and propanethiol (0.003%). Experiments with sterilized sediment, 2-bromoethanesulfonic acid or NaNO3 were negative for alkane production, suggesting that methanogens were involved in alkane generation. Detailed investigation on ethanogenesis from ethylene showed that this reaction required H2 but at reasonably low concentration (< 120 nmol dissolved H2 l−1 slurry) and caused a slight stable carbon isotope effect (εethane/ethylene = −8.6 ± 2.4‰). The high ethane-producing potential, reasonable H2 requirement and extensive occurrence of ethylene make ethylene reduction a plausible explanation for ethane in cold marine sediment. Phylogenetic analysis was first carried out with an ethane-producing enrichment with ethylene as the substrate and showed a dominance of homoacetogenic bacteria and the methanogenic genus Methanocalculus. Although we cannot rule out the possibility that other methanogens in the gene libraries are responsible for ethanogenesis from ethylene, the dominance of Methanocalculus, with its hydrogenotrophic cultured representatives, is in accord with our biogeochemical observation that H2 is required for this reaction.  相似文献   

8.
The contents of biogenic components in 1511 samples of the Baltic Sea sediments (depth range 0–5 cm) are studied, and maps of their distribution are compiled. The sediments contain < 13.03% Corg, < 1.33% N, < 9.0% SiO2am, < 5.0% CaCO3, and < 1.45% P. The maximum and elevated contents of components are found in the mud of the sea deeps. The more fraction < 0.01 mm the sediments contain, the higher are the contents of components. Four facies types of carbonaceous mud, precursors of shales, have been recognized: (1) shallow-water (lagoon) lime sapropel, (2) carbonaceous mud of the shallow-water Gulf of Finland, (3) carbonaceous mud of the middle-depth Baltic Sea, and (4) laminated carbonaceous metal-bearing mud. The latter type of mud is strongly enriched in manganese and ore-forming trace elements, which points to its formation in the stagnant environment. In composition the Baltic Sea mud is similar to petroliferous mudstones of the Bazhenov Formation in West Siberia and to ancient black shales.  相似文献   

9.
The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5–1.8 × 109 cells g−1 dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs cell−1. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.  相似文献   

10.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

11.
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone.Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (> 99.85 mol.% of ∑[C1–C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (δ13C = ? 53.5‰ V-PDB; D/H around ? 175‰ SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by > 0.03 mol.% (∑[C1–C4, CO2]) relative to the other gas types and the virtual lack of 14C–CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely.As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% ∑(C1–C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C–CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.  相似文献   

12.
We sampled two box-core sediments from the slope of the eastern South Korea Plateau (SKP) in the East Sea (Sea of Japan) at water depths of 1400 and 1700 m. Two chemical fractions of extractable (hydroxylamine/acetic acid) and residual rare earth elements (REEs) together with Al, Ca, Fe, Mg, Mn, P, S, As, Mo, and U were analyzed to assess the post-depositional redistribution of REEs. Extractable Fe and Mn are noticeably abundant in the oxic topmost sediment layer (<3 cm). However, some trace elements (e.g., S, As, Mo, U) are more abundant at depth, where redox conditions are different. Analysis of upper continental crust (UCC)-normalized (La/Gd)UCC, (La/Yb)UCC, and (Ce/Ce*)UCC revealed that the extractable REE is characterized by middle REE (MREE) enrichment and a positive cerium (Ce) anomaly, different from the case of the residual fraction which shows slight enrichment in light REEs (LREEs) with no Ce anomaly. The extractable MREEs seem to have been incorporated into high-Mg calcite during reductive dissolution of Fe oxyhydroxides. In the top sediment layer, the positive Ce anomaly is attributed to Ce oxide, which can be mobilized in deeper oxygen-poor environments and redistributed in the sediment column. In addition, differential concentrations of Ce and other LREEs in pore water appear to result in variable (Ce/Ce*)UCC ratios in the extractable fraction at depth.  相似文献   

13.
Effective radium-226 concentration (ECRa) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. ECRa was measured in the laboratory by radon-222 emanation. The samples (n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The ECRa values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg?1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg?1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent ECRa values in corresponding stratigraphic sediment layers. ECRa measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, ECRa values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg?1 in soils of Syabru–Bensi (Central Nepal), 23 ± 1 Bq kg?1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg?1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg?1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of ECRa values for these various soils is important for modelling radon exhalation at the ground surface, in particular in the vicinity of active faults. Importantly, the study also reveals that, above numerous sediments of Kathmandu Valley, radon concentration in dwellings can potentially exceed the level of 300 Bq m?3 for residential areas; a fact that should be seriously taken into account by the governmental and non-governmental agencies as well as building authorities.  相似文献   

14.
《Applied Geochemistry》2005,20(5):989-1016
Groundwater from the Quaternary loess aquifer of La Pampa, central Argentina, has significant problems with high concentrations of As (up to 5300 μg L−1) as well as other potentially toxic trace elements such as F, B, Mo, U, Se and V. Total As concentrations in 45 loess samples collected from the aquifer have a range of 3–18 mg kg−1 with a mean of 8 mg kg−1. These values are comparable to world-average sediment As concentrations. Five samples of rhyolitic ash from the area have As concentrations of 7–12 mg kg−1. Chemical analysis included loess sediments and extracted porewaters from two specially cored boreholes. Results reveal a large range of porewater As concentrations, being generally higher in the horizons with highest sediment As concentrations. The displaced porewaters have As concentrations ranging up to 7500 μg L−1 as well as exceptionally high concentrations of some other oxyanion species, including V up to 12 mg L−1. The highest concentrations are found in a borehole located in a topographic depression, which is a zone of likely groundwater discharge and enhanced residence time. Comparison of sediment and porewater data does not reveal unequivocally the sources of the As, but selective extract data (acid-ammonium oxalate and hydroxylamine hydrochloride) suggest that much of the As (and V) is associated with Fe oxides. Primary oxides such as magnetite and ilmenite may be partial sources but given the weathered nature of many of the sediments, secondary oxide minerals are probably more important. Extract compositions also suggest that Mn oxide may be an As source. The groundwaters of the region are oxidising, with dissolved O2, NO3 and SO4 normally present and As(V) usually the dominant dissolved As species. Under such conditions, the solubility of Fe and Mn oxides is low and As mobilisation is strongly controlled by sorption–desorption reactions. Desorption may be facilitated by the relatively high-pH conditions of the groundwaters in the region (7.0–8.8) and high concentrations of potential competitors (e.g. V, P, HCO3). PHREEQC modelling suggests that the presence of V at the concentrations observed in the Pampean porewaters can suppress the sorption of As to hydrous Fe(III) oxide (HFO) by up to an order of magnitude. Bicarbonate had a comparatively small competitive effect. Oxalate extract concentrations have been used to provide an upper estimate of the amount of labile As in the sediments. A near-linear correlation between oxalate-extractable and porewater As in one of the cored boreholes investigated has been used to estimate an approximate Kd value for the sediments of 0.94 L kg−1. This low value indicates that the sediments have an unusually low affinity for As.  相似文献   

15.
Soil development and landscape evolution were studied in the basin-shaped Phobjikha Valley at 2900–3200 m a.s.l., to the west of the Black Mountain Range, West Central Bhutan. The local environmental setting with strong along-valley winds, frequent freeze–thaw cycles, extensive dry periods and sparse vegetation cover seems to encourage the generation and short-distance transport of silt-sized particles. The effects of this process are evidenced in the smooth valley morphology and in the nature of the examined pedons. Their involvement in continuing redistribution of local sediments is reflected by a homogeneous silty-clayey and stone-free texture, varying profile depths, buried topsoils and weakly developed recent A horizons. In protected locations, in situ weathering of metamorphic parent materials results in alu-andic features with bulk densities <0.9 g cm?3, (Alo + ½Feo) > 2%, and phosphate retention >95%. Dominance by Al-hydroxy interlayered clay minerals and large amounts of well-crystallised iron oxides indicate an advanced stage of weathering. In areas of preferred eolian deposition, argic and ferralic features emerge, with clay contents of up to 60% and surface areas of >50 m2 g?1. Under forest, umbric horizons can develop. CECeff is below 10 cmolc kg?1 at all sites. Cluster and factor analyses of soil chemical and physical parameters confirm the redistribution of local sediments as a dominant factor behind the measured variables. No clear indication of glacial activities in the area was found, whereas the massive silty sediments in the lower parts of most profiles, the presence of debris slopes, and the asymmetric cross sections of the side valleys suggest periglacial conditions. Buried topsoils dated at about 2000 conventional 14C years BP indicate a weakening or absence of sediment influx under wetter conditions towards the end of the Holocene climate optimum. Charcoal on top of paleosols suggests that human activities of deforestation, grazing and arable agriculture may have contributed to the reactivation of local sediment redistribution until today.  相似文献   

16.
《Chemical Geology》2007,236(3-4):181-198
Variations in molybdenum isotopic composition, spanning the range of ∼ 2.3‰ in the terms of 97Mo/95Mo ratio, have been measured in sediment cores from three lakes in northern Sweden and north-western Russia. These variations have been produced by both isotopically variable input of Mo into the lakes due to Mo isotopic heterogeneity of bedrock in the drainage basins and fractionation in the lake systems due to temporal variations in limnological conditions. Mo isotope abundances of bedrock in the lake drainage basins have been documented by analysis of Mo isotope ratios of a suite of molybdenite occurrences collected in the studied area and of detrital fractions of the lake sediment cores. The median δ97Mo value of the investigated molybdenites is 0.26‰ with standard deviation of 0.43‰ (n = 19), whereas the median δ97Mo value of detrital sediment fractions from two lakes is − 0.40‰ with standard deviation of 0.36‰ (n = 15).The isotopic composition of Mo in the sediment cores has been found to be dependent on redox conditions of the water columns and the dominant type of scavenging phases. Hydrous Fe oxides have been shown to be an efficient scavenger of Mo from porewater under oxic conditions. Oxidative precipitation of Fe(II) in the sediments resulted in co-precipitation of Mo and significant authigenic enrichment at the redox boundary. In spite of a pronounced increase in Mo concentration associated with Fe oxides at the redox boundary the isotopic composition of Mo in this zone varies insignificantly, suggesting little or no isotope fractionation during scavenging of Mo by hydrous Fe oxides. In a lake with anoxic bottom water a chironomid-inferred reconstruction of O2 conditions in the bottom water through the Holocene indicates that increased O2 concentrations are generally associated with low δ97Mo/95Mo values of the sediments, whereas lowered O2 contents of the bottom water are accompanied by relatively high δ97Mo/95Mo values, thus confirming the potential of Mo isotope data to be a proxy for redox conditions of overlying waters. However, it is pointed out that other processes including input of isotopically heterogeneous Mo and Mn cycling in the redox-stratified water column can be a primary cause of variations in Mo isotopic compositions of lake sediments.  相似文献   

17.
Banded iron-formations (BIFs) form an important part of the Archaean to Proterozoic greenstone belts in the Southern Cameroon. In this study, major, trace and REE chemistry of the banded iron-formation are utilized to explore the source of metals and to constraint the origin and depositional environment of these BIFs. The studied BIF belongs to the oxide facies iron formations composed mainly of iron oxide (mainly magnetite) mesobands alternating with quartz mesobands. The mineralogy of the BIF sample consists of magnetite and quartz with lesser amount of secondary martite, goethite and trace of gibbsite and smectite. The major element chemistry of these iron-formations is remarkably simple with the main constituents being SiO2 and Fe2O3 which constitute 95.6–99.5% of the bulk rock. Low Al2O3, TiO2, and HFSE concentrations show that they are relatively detritus-free chemical sediments. The Pearson’s correlation matrix of major element reveals that there is a strong positive correlation (r = 0.99) of Al with Ti and no to weak negative correlation of Ti with Mn, Ca and weak positive correlation of Si with Ca, suggesting the null to very minor contribution of detrital material to chemical sediment. The trace elements with minor enrichments are transition metals such as Zn, Cr, Sr, V and Pb. This is an indicator of direct volcanogenic hydrothermal input in chemical precipitates. The studied BIF have a low ΣREE content, ranging between 0.41 and 3.22 ppm with an average of 0.87 ppm, similar to that of pure chemical sediments. The shale-normalized patterns show depletion in light REE, slightly enrichment in heavy REE and exhibit weak positive europium anomalies. These geochemical characteristics indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The absence of a large positive Eu anomaly in the studied BIF indicates an important role of low-temperature hydrothermal solutions. The chondrite-normalized REE patterns are characterized by LREE-enriched (Mean LaCN/YbCN = 8.01) and HREE depletion (Mean TbCN/YbCN = 1.61) patterns and show positive Ce anomalies. With the exception of one sample (LBR133), all of the BIF samples analyzed during this study have positive Ce anomalies on both chondrite- and PASS-normalized plots. This may indicate that the BIFs within the Elom area were formed within a redox stratified ocean. The positive Ce anomalies in the studied samples likely suggest that the basin in which Fe formations were deposited was reducing with respect to Ce, probably in the suboxic or anoxic seawaters.  相似文献   

18.
Parasound profiles across the Shaban Deep in the Red Sea indicate turbiditic transport of surface sediments from the topographic height (basalt ridge) into the interior of the deep. This is supported by petrographical and (isotope-) geochemical evidence in the East Basin of the Shaban Deep where the presence of variable mixtures of authochtonous and allochthonous sediment compounds had been found.The uppermost 170 cm of both sediment cores 17008-1 and 17009-3 reveal “normal” stable oxygen isotope values for the planktonic foraminifera Globigerinoides ruber near ?1‰ which is indicative for carbonate formation in Red Sea surface water around 27 °C. However, below 182 cm in core 17008-1 highly variable δ 18O values for G. ruber between 0.26 and ?10.68‰ occur which are not the result of temperature-controlled oxygen isotope fractionation between foraminiferal carbonate and Red Sea surface water. The lowest δ18O values of ?10.68‰ measured for highly-altered foraminifera shells suggests carbonate precipitation higher than 90 °C.Organic petrographical observations show a great diversity of marine-derived macerals and terrigenous organic particles. Based on petrographical investigations sediment core 17008-1 can be subdivided in intervals predominantly of authochtonous character (i.e. 1, 3, 5 corresponding to core depths 0–170 cm, 370–415 cm, 69–136 cm), and allochthonous/thermally altered character (e.g. 2 and 4 corresponding to core depths 189–353 cm and 515–671 cm). Allochthonous/thermally altered material displays a wide to an extremely wide range of maturities (0.38–1.42% Rr) and also natural coke particles were found.Similarly, the organic geochemical and pyrolysis data indicate the predominance of well-preserved, immature algal and bacterial remains with a minor contribution of land plant material. Sediments below 170 cm (core 17008-1) contain contributions of re-sedimented pre-heated material most likely from the area of the basaltic ridge. This is documented by individual coke particles reduced hydrogen indices and elevated Tmax values up to 440 °C.An “oil-type” contribution (evidenced by mature biomarkers, hopene/hopane ratios, elevated background fluorescence, n-alkane distribution) is also present in the sediments which most likely originated at greater depth and impregnated the surface sediments.The heat source responsible for recrystallisation of foraminiferal carbonate and maturation of organic particles in Shaban Deep sediments most likely is attributed to modern basalt extrusions which now separate the Shaban Deep subbasins.  相似文献   

19.
This study was conducted to assess the anthropogenic impact on metal concentrations in the bottom sediments of the Juam reservoir, Korea, and in stream sediments in its catchment, and to estimate the potential mobility of selected metals (Fe, Mn, Cu, Ni, Pb and Zn) using sequential extraction. A comparison of the metal concentrations in the stream sediments with mean background values in sediments collected from first- or second-order creeks shows that Pb, Cu and Ni are the most affected by anthropogenic inputs. The 206Pb/207Pb ratios of the bottom and core sediments (means: 1.2320 ± 0.0502 and 1.2212 ± 0.0040, respectively) suggest that Pb contamination is mainly due to the waste discharge of abandoned coal and metal mines rather than industrial and airborne sources. Considering the proportion of metals bound to the exchangeable, carbonate and reducible fractions, the comparative mobility of metals is suggested to decrease in the order Mn > Pb > Zn > Ni > Fe  Cu.  相似文献   

20.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO2 (≥70.0 wt%), intermediate contents of Al2O3 (11.6–28.4 wt%), Fe2O3 (0.00–20.5 wt%) and TiO2 (0.04–4.08 wt%), while K2O (≤0.18 wt%), Na2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al2O3 and Ga in kaolinite; the strong correlation between Fe2O3 and V in hematite and goethite; the affinity of TiO2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号