首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The ability to achieve ecological sustainability and the sustainable development of marine and estuarine ecosystems constitutes a complex major challenge and depends on many driving forces, often conflicting with each other. In particular, there are three major drivers: (a) the search for human well-being, health and safety, (b) the maintenance of ecological sustainability and environmental equilibrium, and (c) the tolerance of an increasing human population pressure and demand for wealth creation.We propose here the use of a conceptual guidance tool – the ecological sustainability trigon (EST) – as a means of building and testing environmental management scenarios. Although it requires further testing, the EST allows us to (a) address those three major drivers using human society view as a common currency, and (b) describe our behaviour, energetics (economy) and dynamics through ecological theory. Moreover, the EST appears promising for gap analysis and the means to address new research questions.  相似文献   

2.
We explored distributional patterns and habitat preferences of ostracods in the Burdur province (Turkey). At 121 sites we recorded 35 taxa (22 recent, 13 sub-recent), of which 23 represent new records for the province. According to the Index of Dispersion and d-statistics, the individual species exhibited clumped distributions. Cosmopolitan species dominated (63.64%). A direct effect of regional factors (e.g., elevation) was not observed, while local factors (e.g., water temperature) best explained species distribution among habitats. Based on alpha diversity values, natural habitats (springs, ponds, creeks) were more suitable than artificial habitats (e.g., troughs, dams), suggesting that natural habitats define regional species diversity. Twenty-two of the recorded species had wider ecological ranges than previously reported. Cosmopolitan species appeared to suppress non-cosmopolitan species due to their wider ecological range.  相似文献   

3.
Strategies of lake sanitation   总被引:1,自引:0,他引:1  
Lake sanitation measures must be planned in such a way that under consideration of the ecological requirements the trophic state which is needed in order for the lake to fulfill its designated purpose can be achieved with a sufficient degree of certainty. This is obtainable solely by limiting the influx of phosphorus compounds. The influencing factors as well as a knowledge of the local conditions which must be taken into consideration so that planning can be undertaken are described and discussed. The limits and effectiveness of technical and administrative single and joint control measures are presented with regard to the source of the phosphorus compounds. Presented at the International Conference on Lake Restoration at Zürich, 3–4 November 1986  相似文献   

4.
River health can be defined as the degree to which riverine energy source,water quality,flow regime, habitat and biota match the natural conditions.In a healthy river,physical process and form remain actively connected and able to mutually adjust,and biological communities have natural levels of diversity and are resilient to environmental stress.Both physical diversity and biodiversity influence river health.Physical diversity is governed by hydrology,hydraulics,and substrate,as reflected in the geometry of the river channel and adjacent floodplain,which create habitat for aquatic and riparian organisms.Biodiversity is governed by biological processes such as competition and predation,but biodiversity also reflects the diversity,abundance and stability of habitat,as well as connectivity. Connectivity within a river corridor includes longitudinal,lateral,and vertical dimensions.River health declines as any of these interacting components is compromised by human activities.The cumulative effect of dams and other human alterations of rivers has been primarily to directly reduce physical diversity and connectivity,which indirectly reduces biodiversity.Restoration and maintenance of physical diversity and biodiversity on rivers affected by dams requires quantifying relations between the driver variables of flow and sediment supply,and the response variables of habitat,connectivity,and biological communities.These relations can take the form of thresholds(e.g., entrainment of streambed sediment) or response curves(e.g.,fish biomass versus extent and duration of floodplain inundation).I use examples from Wyoming,Colorado,and Arizona in the western United States to illustrate how to quantify relations between driver and response variables on rivers affected by dams.  相似文献   

5.
Contaminant intrusion in a water distribution network (DN) has three basic pre-conditions: source of contaminant (e.g., leaky sewer), a pathway (e.g., water main leaks), and a driving force (e.g., negative pressure). The impact of intrusion can be catastrophic if residual disinfectant (chlorine) is not present. To avoid microbiological water quality failure, higher levels of secondary chlorination doses can be a possible solution, but they can produce disinfectant by-products which lead to taste and odour complaints. This study presents a methodology to identify potential intrusion points in a DN and optimize booster chlorination based on trade-offs among microbiological risk, chemical risk and life-cycle cost for booster chlorination. A point-scoring scheme was developed to identify the potential intrusion points within a DN. It utilized factors such as pollutant source (e.g., sewer characteristics), pollution pathway (water main diameter, length, age, and surrounding soil properties, etc.), consequence of contamination (e.g., population, and land use), and operational factors (e.g., water pressure) integrated through a geographical information system using advanced ArcMap 10 operations. The contaminant intrusion was modelled for E. Coli O156: H7 (a microbiological indicator) using the EPANET-MSX programmer’s toolkit. The quantitative microbial risk assessment and chemical (human health) risk assessment frameworks were adapted to estimate risk potentials. Booster chlorination locations and dosages were selected using a multi-objective genetic algorithm. The methodology was illustrated through a case study on a portion of a municipal DN.  相似文献   

6.
《Water Policy》2001,3(3):257-265
Water is essential to all life. Human species use water directly for domestic needs, growing food, generating power and for industrial processes. Ensuring sufficient water for people for these purposes is an important ethical question. People also use water indirectly by benefitting from valuable products (e.g. fish), and services (e.g. water regulation) provided by aquatic ecosystems. Additionally, it satisfies the growing belief amongst many people that human species have a moral duty to protect biodiversity, through providing sufficient water to maintain flora and fauna. Many decisions on water allocation are made on economic grounds. However, traditional cost-benefit analysis does not consider other ethical, political, social, historical or ecological issues, which cannot be readily given a monetary value. Wider decision-making frameworks, such as multi-criteria analysis are thus required that incorporate other factors, such as ecological support systems that keep the planet fit for life.  相似文献   

7.
8.
Numerous studies have examined the event‐specific hydrologic response of hillslopes and catchments to rainfall. Knowledge gaps, however, remain regarding the relative influence of different meteorological factors on hydrologic response, the predictability of hydrologic response from site characteristics, or even the best metrics to use to effectively capture the temporal variability of hydrologic response. This study aimed to address those knowledge gaps by focusing on 21 sites with contrasting climate, topography, geology, soil properties, and land cover. High‐frequency rainfall and discharge records were analysed, resulting in the delineation of over 1,600 rainfall–runoff events, which were described using a suite of hydrologic response metrics and meteorological factors. Univariate and multivariate statistical techniques were then applied to synthesize the information conveyed by the computed metrics and factors, notably measures of central tendency and variability, variation partitioning, partial correlations, and principal component analysis. Results showed that some response magnitude metrics generally reported in the literature (e.g., runoff ratio and area‐normalized peak discharge) did not vary significantly among sites. The temporal variability in site‐specific hydrologic response was often attributable to the joint influence of storage‐driven (e.g., total event rainfall and antecedent precipitation) and intensity‐driven (e.g., rainfall intensity and antecedent potential evapotranspiration) meteorological factors. Mean annual temperature and potential evapotranspiration at a given site appeared to be good predictors of hydrologic response timing (e.g., response lag and lag to peak). Response timing metrics, particularly those associated with response initiation, were also identified as the metrics most critical for capturing intrasite response variability. This study therefore contributes to the growing knowledge on event‐specific hydrologic response by highlighting the importance of response timing metrics and intensity‐driven meteorological factors, which are infrequently discussed in the literature. As few correlations were found between physiographic variables and response metrics, more data‐driven studies are recommended to further our understanding of landscape–hydrology interactions.  相似文献   

9.
Terrain plays a key role in landscape pattern formation, particularly in the transition zones from mountains to plains. Exploring the relationships between terrain characteristics and landscape types in terrain-complex areas can help reveal the mechanisms underlying the relationships. In this study, Qihe River Basin, situated in the transition zone from the Taihang Mountains to the North-China Plain, was selected as a case study area. First, the spatial variations in the relief amplitudes (i.e., high-amplitude terrain undulations) were analyzed. Second, the effects of relief amplitudes on the landscape patterns were indepth investigated from the perspectives of both landscape types and landscape indices. Finally, a logistic regression model was employed to examine the relationships between the landscape patterns and the influencing factors (natural and human) at different relief amplitudes. The results show that with increasing relief amplitude, anthropogenic landscapes gradually give in to natural landscapes. Specifically, human factors normally dominate the gentle areas (e.g., flat areas) in influencing the distribution of landscape types, and natural factors normally dominate the highly-undulating areas (e.g., moderate relief areas). As for the intermediately undulating areas (i.e., medium relief amplitudes), a combined influence of natural and human factors result in the highest varieties of landscape types. The results also show that in micro-relief areas and small relief areas where natural factors and human factors are more or less equally active, landscape types are affected by a combination of natural and human factors. The combination leads to a high fragmentation and a high diversity of landscape patterns. It seems that appropriate human interferences in these areas can be conducive to enhancing landscape diversity and that inappropriate human interferences can aggravate the problems of landscape fragmentation.  相似文献   

10.
Abstract

The term “environmental flows” is now widely used to reflect the hydrological regime required to sustain freshwater and estuarine ecosystems, and the human livelihoods and well-being that depend on them. The definition suggests a central role for ecohydrological science to help determine a required flow regime for a target ecosystem condition. Indeed, many countries have established laws and policies to implement environmental flows with the expectation that science can deliver the answers. This article provides an overview of recent developments and applications of environmental flows on six continents to explore the changing role of ecohydrological sciences, recognizing its limitations and the emerging needs of society, water resource managers and policy makers. Science has responded with new methods to link hydrology to ecosystem status, but these have also raised fundamental questions that go beyond ecohydrology, such as who decides on the target condition of the ecosystem? Some environmental flow methods are based on the natural flow paradigm, which assumes the desired regime is the natural “unmodified” condition. However, this may be unrealistic where flow regimes have been altered for many centuries and are likely to change with future climate change. Ecosystems are dynamic, so the adoption of environmental flows needs to have a similar dynamic basis. Furthermore, methodological developments have been made in two directions: first, broad-scale hydrological analysis of flow regimes (assuming ecological relevance of hydrograph components) and, second, analysis of ecological impacts of more than one stressor (e.g. flow, morphology, water quality). All methods retain a degree of uncertainty, which translates into risks, and raises questions regarding trust between scientists and the public. Communication between scientists, social scientists, practitioners, policy makers and the public is thus becoming as important as the quality of the science.
Editor Z.W. Kundzewicz

Citation Acreman, M.C., Overton, I.C., King, J., Wood, P., Cowx, I.G., Dunbar, M.J., Kendy, E., and Young, W., 2014. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal, 59 (3–4), 433–450  相似文献   

11.
Relative risk assessment of cruise ships biosolids disposal alternatives   总被引:1,自引:0,他引:1  
A relative risk assessment of biosolids disposal alternatives for cruise ships is presented in this paper. The area of study encompasses islands and marine waters of the Caribbean Sea. The objective was to evaluate relative human health and ecological risks of (a) dewatering/incineration, (b) landing the solids for disposal, considering that in some countries land-disposed solids might be discharged in the near-shore environment untreated, and (c) deep ocean disposal. Input to the Bayesian assessment consisted of professional judgment based on available literature and modeling information, data on constituent concentrations in cruise ship biosolids, and simulations of constituent concentrations in Caribbean waters assuming ocean disposal. Results indicate that human health and ecological risks associated with land disposal and shallow ocean disposal are higher than those of the deep ocean disposal and incineration. For incineration, predicted ecological impacts were lower relative to deep ocean disposal before considering potential impacts of carbon emissions.  相似文献   

12.
This paper evaluates the seismic resistance of steel moment resisting frames (MRFs) with supplemental fluid viscous dampers against collapse. A simplified design procedure is used to design four different steel MRFs with fluid viscous dampers where the strength of the steel MRF and supplemental damping are varied. The combined systems are designed to achieve performance that is similar to or higher than that of conventional steel MRFs designed according to current seismic design codes. Based on the results of nonlinear time history analyses and incremental dynamic analyses, statistics of structural and non‐structural response as well as probabilities of collapse of the steel MRFs with dampers are determined and compared with those of conventional steel MRFs. The analytical frame models used in this study are reliably capable to simulate global frame collapse by considering full geometric nonlinearities as well as the cyclic strength and stiffness deterioration in the plastic hinge regions of structural steel members. The results show that, with the aid of supplemental damping, the performance of a steel MRF with reduced design base shear can be improved and become similar to that of a conventional steel MRF with full design base shear. Incremental dynamic analyses show that supplemental damping reduces the probability of collapse of a steel MRF with a given strength. However, the paper highlights that a design base shear equal to 75% of the minimum design base shear along with supplemental damping to control story drift at 2% (i.e., design drift of a conventional steel MRF) would not guarantee a higher collapse resistance than that of a conventional MRF. At 75% design base shear, a tighter design drift (e.g., 1.5% as shown in this study) is needed to guarantee a higher collapse resistance than that of a conventional MRF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Integrating toxicology and ecology: putting the "eco" into ecotoxicology   总被引:1,自引:0,他引:1  
Environmental toxicology has been and continues to be an important discipline (e.g., single-species testing for screening purposes). However, ecological toxicology (ecotoxicology--more realism in tests, test species and exposures) is required for predicting real world effects and for site-specific assessments. Ecotoxicology and ecology have shown similar developmental patterns over time; closer cooperation between ecologists and toxicologists would benefit both disciplines. Ecology can be incorporated into toxicology either extrinsically (separately, e.g., providing information on pre-selected test species) or intrinsically (e.g., as part of test species selection)--the latter is preferable. General guidelines for acute and chronic testing and criteria for species selection differ for ecotoxicology and environmental toxicology, and are outlined. An overall framework is proposed based on ecological risk assessment (ERA), for combining ecology and toxicology (environmental and ecological) for decision-making. Increased emphasis on ecotoxicology represents a shift from reductionist to holistic approaches.  相似文献   

14.
The water‐level decline of the High Plains/Ogallala aquifer is one of the largest water management concerns in the United States. The economy and livelihood of people living in that vast region depend almost exclusively on water extracted from that aquifer. A debate about its future is ongoing, and questions remain as to how best to conserve the groundwater resource. Maintaining the aquifer will require reductions in pumping and irrigated hectarage and adopting additional conservation measures. Eventually, the agricultural system will have to be based dominantly on the renewable water resources of the region. In effect, this means a limited‐irrigation and/or dry‐farming regime. What Kansas is currently doing to further extend the life of the aquifer is presented here together with additional measures that could be taken. A key management approach to help sustain the aquifer in western Kansas is to divide the aquifer into subunits on which to base localized management decisions. Another recently adopted measure is the establishment of local enhanced management areas, which would allow locally agreed upon specific corrective controls in those areas. History has shown that incentive and voluntary plans alone have not been successful in halting water‐level declines. Thus, limits and timelines need to be set and checks must be in place to enforce strict administration of conservation measures. It is advocated that water laws be reformed and modernized so that “water rights” are constrained by the current availability of water and the preservation of the resource base for future generations.  相似文献   

15.
Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed ‘legacy contaminants’; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however, the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology.  相似文献   

16.
Ecological base line states for fish communities are necessary for the evaluation of ecological integrity. In Austria the fish communities of all the larger lakes are strongly influenced by human activities, like commercial fisheries, fish stocking, eutrophication or shore line degradation, and therefore these baseline states can not be developed by comparison with a natural, undisturbed lake. We developed ecological baseline states for the fish communities of the lakes Hallstättersee, Traunsee, Mondsee, Irrsee and Wallersee by reconstructing the native fish communities of these lakes from historical documents (from between 1500 to 1940). Then we classified the potential fish species of these lakes according to their ecological requirements. Finally we developed the base line states with 16 different ecological factors similar to the factors used for the ecological integrity assessment procedure for streams.

The process of reconstructing the fish communities and some advantages and disadvantages of the base line states for fish communities are discussed.  相似文献   


17.
Intense research and refinement of the tools used in performance-based seismic engineering have been made, but the maturity and accuracy of these methods have not been adequately confirmed with actual data from the field. The gap between the assumed characteristics of actual building systems and their idealized counterparts used for analysis is wide. When the randomly distributed flaws in buildings as they exist in urban areas and the extreme variability of ground motion patterns combine, the conventional procedures used for pushover or dynamic response history analyses seem to fall short of reconciling the differences between calculated and observed damage. For emergency planning and loss modeling purposes, such discrepancies are factors that must be borne in mind. Two relevant examples are provided herein. These examples demonstrate that consensus-based analytical guidelines also require well-idealized building models that do not lend themselves to reasonably manageable representations from field data. As a corollary, loss modeling techniques, e.g., used for insurance purposes, must undergo further development and improvement.  相似文献   

18.
Intense research and refinement of the tools used in performance-based seismic engineering have been made,but the maturity and accuracy of these methods have not been adequately confirmed with actual data from the field. The gap between the assumed characteristics of actual building systems and their idealized counterparts used for analysis is wide. When the randomly distributed flaws in buildings as they exist in urban areas and the extreme variability of ground motion patterns combine,the conventional procedures used for pushover or dynamic response history analyses seem to fall short of reconciling the differences between calculated and observed damage. For emergency planning and loss modeling purposes,such discrepancies are factors that must be borne in mind. Two relevant examples are provided herein. These examples demonstrate that consensus-based analytical guidelines also require well-idealized building models that do not lend themselves to reasonably manageable representations from field data. As a corollary,loss modeling techniques,e.g.,used for insurance purposes,must undergo further development and improvement.  相似文献   

19.
杀生剂作为抑菌活性成分,广泛应用于药物、个人护理品、食品、农业及其他多种领域中。大量杀生剂会直接或者随污水处理厂出水进入地表水环境中,威胁人体健康和生态安全。本研究通过对长江中下游地区61个湖泊进行调查,共检出11种杀生剂,包括5种杀菌剂、1种防污剂、3种尼泊金酯类防腐剂和2种消毒剂,总浓度达103 ng/g。其中,多菌灵和尼泊金甲酯的检出率大于50%,分别为100%和96.2%。多菌灵和尼泊金甲酯的平均浓度分别为(1.79±2.76)和(11.4±8.19) ng/g,其他杀生剂的平均浓度均低于1.0 ng/g。与国外许多河流湖泊相比,长江中下游地区湖泊沉积物中杀生剂污染处于中等偏低水平,总杀生剂浓度的平均值为(16.7±14.5) ng/g。氟康唑、咪康唑、三氯生和三氯卡班可能主要来自生活污水,多菌灵和涕必灵主要来自面源污染。尼泊金酯类防腐剂在沉积物中的分布特征与沉积物总有机碳含量密切相关。采用风险商值法对湖泊沉积物中杀生剂的生态风险进行了评价,发现多菌灵、尼泊金甲酯和三氯卡班在部分采样点具有高风险。有必要重点关注高风险污染物和高风险区域,并采取适当的措施来减少杀生剂对湖泊生态环境...  相似文献   

20.
An analysis of the textures of pallasites has been made using data concerning the kinetic and rheological properties of silicates and metals. Pallasites containing rounded olivines (e.g., the Springwater and Brehnam pallasites) have been heated to above the solidus temperature of the metallic iron phases, ~ 1270 K. The rounded olivines of grain size 0.5–1.0 cm observed in the Springwater pallasites were formed between 1270 and 1370 K. On the other hand, those of grain size 0.5–1.0 mm as found in the Brehnam pallasites may have been heated to above 1370 K; however, the duration of heating at such high temperatures must have been less than 5 × 103 y. Pallasites containing angular olivines with microscopically rounded corners (e.g., the Eagle Station, Dora pallasites) have suffered shock events fracturing the olivine grains, which may correspond to collisions during the accretional stage of the parent body, and experienced successive annealing during cooling from a temperature between 1150 and 1270 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号