首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sm–Nd (garnet), U–Pb (monazite) and Rb–Sr (biotite) ages from a composite migmatite sample (Damara orogen, Namibia) constrain the time of high‐grade regional metamorphism and the duration of regional metamorphic events. Sm–Nd garnet whole‐rock ages for a strongly restitic melanosome and an adjacent intrusive leucosome yield ages of 534±5, 528±11 and 539±8 Ma. These results provide substantial evidence for pre‐500 Ma Pan‐African regional metamorphism and melting for this segment of the orogen. Other parts of the migmatite yield younger Sm–Nd ages of 488±9 Ma for melanosome and 496±10, 492±5 and 511±16 Ma for the corresponding leucosomes. Garnet from one xenolith from the leucosomes yields an age of 497±2 Ma. Major element compostions of garnet are different in terms of absolute abundances of pyrope and spessartine components, but the flat shape of the elemental patterns suggests late‐stage retrograde equilibration. Rare earth element compositions of the garnet from the different layers are similar except for garnet from the intrusive leucosome suggesting that they grew in different environments. Monazite from the leucosomes is reversely discordant and records 207Pb/235U ages between 536 and 529 Ma, indicating that this monazite represents incorporated residual material from the first melting event. Monazite from the mesosome MES 2 and the melanosome MEL 3 gives 207Pb/235U ages of 523 and 526 Ma, and 529 and 531 Ma, respectively, which probably indicates another thermal event. Previously published 207Pb/235U monazite data give ages between 525 and 521 Ma for composite migmatites, and 521 and 518 Ma for monazite from neosomes. Monazite from granitic to granodioritic veins indicates another thermal event at 507–505 Ma. These ages are also recorded in 207Pb/235U monazite data of 508 Ma from the metasediment MET 1 from the migmatite and also in the Sm–Nd garnet ages obtained in this study. Taken together, these ages indicate that high‐grade metamorphism started at c. 535 Ma (or earlier) and was followed by thermal events at c. 520 Ma and c. 505 Ma. The latter event is probably connected with the intrusion of a large igneous body (Donkerhoek granite) for which so far only imprecise Rb–Sr whole‐rock data of 520±15 Ma are available. Rb–Sr biotite ages from the different layers of the migmatite are 488, 469 and 473 Ma. These different ages indicate late‐stage disturbance of the Rb–Sr isotopic system on the sub‐sample scale. Nevertheless, these ages are close to the youngest Sm–Nd garnet ages, indicating rapid cooling rates between 13 and 20°C Ma?1 and fast uplift of this segment of the crust. Similar Sm–Nd garnet and U–Pb monazite ages suggest that the closure temperatures for both isotopic systems are not very different in this case and are probably similar or higher than the previously estimated peak metamorphic temperatures of 730±30°C. The preservation of restitic monazite in leucosomes indicates that dissolution of monazite in felsic water‐undersaturated peraluminous melts can be sluggish. This study shows that geochronological data from migmatites can record polymetamorphic episodes in high‐grade terranes that often contain cryptic evidence for the nature and timing of early metamorphic events.  相似文献   

2.
In the southern sector of the Southern Brasília Belt, late Neoproterozoic arc–passive margin collision resulted in juxtaposition of an arc‐derived nappe (the Socorro–Guaxupé Nappe) over a stack of passive margin‐derived nappes (the Andrelândia Nappe Complex) that lies on top of autochthonous basement of the São Francisco Craton. (U–Th)–Pb monazite ages are reported from the high‐grade nappes of the Andrelândia Nappe Complex to better constrain the high‐temperature retrograde evolution. For residual HP granulites from the uppermost Três Pontas–Varginha Nappe, (U–Th)–Pb ages of c. 662 and 655 Ma from low yttrium monazite inclusions in the rims of, or associated with garnet are interpreted to date the late‐stage close‐to‐peak prograde evolution, whereas an age of c. 648 Ma from a similar low yttrium monazite inclusion is interpreted to record post‐peak recrystallization with melt via factures in garnet. For the same nappe, ages of 640–631 Ma retrieved from higher yttrium areas or cores in monazite grains that occur both as inclusions in garnet and in the matrix are interpreted to record growth of monazite either by local breakdown of garnet (±older monazite) and mass exchange with a matrix melt reservoir along cracks or growth from residual melt in the matrix as it crystallized during high‐pressure, close‐to‐isobaric cooling close to the solidus, the temperature of which, at a given pressure, varies with bulk composition of the residual granulites. (U–Th)–Pb ages in the range 620–588 Ma from lower yttrium areas in these monazite grains and from matrix‐hosted patchy monazite are interpreted to date exhumation, as recorded by close‐to‐isothermal decompression and subsequent close‐to‐isobaric cooling. Older monazite ages in this group are interpreted to record late‐stage interaction with melt close to the solidus whereas younger monazite ages are interpreted to record recrystallization of monazite by dissolution–reprecipitation owing to ingress of alkali fluid from the Carmo da Cachoeira Nappe beneath as fluid was released by crystallization of in‐source melt at the solidus. In the underlying Carmo da Cachoeira Nappe, higher yttrium areas in monazite and one single domain monazite yield chemical ages of 619–616 Ma, which are interpreted to date growth as in‐source melt crystallized close to the solidus along the high‐pressure, close‐to‐isobaric segment of the retrograde P–T evolution. Younger (U–Th)–Pb ages of 600–595 Ma retrieved from lower yttrium areas and one single domain monazite are interpreted to record recrystallization of monazite by dissolution–reprecipitation owing to release of fluid at the solidus during exhumation of this nappe. Monazite from the Carvalhos Klippe, interpreted to be correlative with the uppermost nappe, yields a wide range of (U–Th)–Pb ages: for two zoned grains, c. 619 and c. 614 Ma from higher yttrium cores, and c. 583 and c. 595 Ma from lower yttrium rims; and, 592–580 Ma from single domain grains in one sample, and ages of c. 593 and c. 563 Ma from monazite in a second sample. Ages younger than 605 Ma are interpreted to date a fluid‐induced response to the early stages of orogenic loading associated with terrane accretion in the Ribeira Belt to the southeast. The results reported here demonstrate that ages retrieved from monazite that grew close to the solidus in residual granulites from a single tectonic unit will vary from sample to sample according to differences in the solidus temperatures. Further, we show that monazite inclusions may yield ages that are younger than the host mineral and confirm the propensity of monazite to record evidence of tectonic events that are not always registered by other high‐temperature mineral chronometers.  相似文献   

3.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

4.
<正>Thus far,our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results.Therefore,in this study,the ~(40)Ar/~(39)Ar and sensitive high resolution ion micro-probe(SHRIMP) U-Pb dating methods were both used and the results compared,particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding,to establish ages that are close to the real emplacements.The results of SHRIMP U-Pb dating for zircon showed a high amount of U,but a very low value for Th/U.The high U amount,coupled with characteristics of inclusions in zircons,indicates that Xuebaoding granites are not suitable for U-Pb dating.Therefore,muscovite in the same granite samples was selected for ~(40)Ar/~(39)Ar dating.The ~(40)Ar/~(39)Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding,gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma.The ~(40)Ar/~(39)Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ~(40)Ar/~(36)Ar intercept of 277.0±23.4(2σ) was very close to the air ratio,indicating that no apparent excess argon contamination was present.These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma,respectively.Through comparison of both dating methods and their results,we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ~(40)Ar/~(39)Ar dating without extra Ar.Based on this evidence,as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites,it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma.Moreover,compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt,the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze.Therefore,~(40)Ar/~(39)Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.  相似文献   

5.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

6.
Amphibolite facies metasedimentary schists within the Yukon‐Tanana terrane in the northern Canadian Cordillera reveal a two‐stage, polymetamorphic garnet growth history. In situ U‐Th‐Pb Sensitive High Resolution Ion Microprobe dating of monazite provide timing constraints for the late stages of garnet growth, deformation and subsequent decompression. Distinct textural and chemical growth zoning domains, separated by a large chemical discontinuity, reveal two stages of garnet growth characterized in part by: (i) a syn‐kinematic, inclusion‐rich stage‐1 garnet core; and (ii) an inclusion‐poor, stage‐2 garnet rim that crystallized with syn‐ to post‐kinematic staurolite and kyanite. Phase equilibria modelling of garnet molar and compositional isopleths suggest stage‐1 garnet growth initiated at ~600 °C, 8 kbar along a clockwise P–T path. Growth of the compositionally distinct, grossular‐rich, pyrope‐poor inner portion of the stage‐2 overgrowth is interpreted to have initiated at higher pressure and/or lower temperature than the stage‐1 core along a separate P–T loop, culminating at peak P–T conditions of ~650–680 °C and 9 kbar. Stage‐2 metamorphism and the waning development of a composite transposition foliation (ST) are dated at c. 118 Ma from monazite aligned parallel to ST, and inclusions in syn‐ to post‐ST staurolite and kyanite. Slightly younger ages (c. 112 Ma) are obtained from Y‐rich monazite that occurs within resorbed areas of both stage‐1 and stage‐2 garnet, together with retrograde staurolite and plagioclase. The younger ages obtained from these texturally and chemically distinct grains are interpreted, with the aid of phase equilibria calculations, to date the growth of monazite from the breakdown of garnet during decompression at c. 112 Ma. Evidence for continued near‐isothermal decompression is provided by the presence of retrograde sillimanite, and cordierite after staurolite, which indicates decompression below ~4–5 kbar prior to cooling below ~550 °C. As most other parts of the Yukon‐Tanana terrane were exhumed to upper crustal levels in the Early Jurassic, these data suggest this domain represents a tectonic window revealing a much younger, high‐grade tectono‐metamorphic core (infrastructure) within the northern Cordilleran orogen. This window may be akin to extensional core complexes identified in east‐central Alaska and in the southeastern Canadian Cordillera.  相似文献   

7.
Incipient charnockites have been widely used as evidence for the infiltration of CO2‐rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene‐bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak‐metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn‐metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high‐grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali‐rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma.  相似文献   

8.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

9.
Garnet peridotites from the southern Su‐Lu ultra‐high‐pressure metamorphic (UHPM) terrane, eastern China, contain porphyroblastic garnet with aligned inclusions comprising a low‐P–T mineral assemblage (chlorite, hornblende, Na‐gedrite, Na‐phlogopite, talc, spinel and pyrite). Orthopyroxene porphyroblasts show fine exsolution lamellae of clinopyroxene and minor chromite. A clinopyroxene inclusion in garnet shows some orthopyroxene exsolution lamellae. Both the rims of porphyroblastic pyroxene and garnet and the matrix pyroxene and garnet crystallized at the expense of olivine. This is interpreted as a result of metasomatism of the peridotites by an SiO2‐rich melt at UHP conditions. A chromian garnet further overgrew on the rims of the garnet. The XMg values (Mg/(Mg+Fe)) of porphyroblastic garnet decrease from core to rim and vary in different peridotite samples, while the compositions of both the porphyroblastic and the matrix pyroxene are similar in terms of Ca–Mg–Fe. The Mg‐rich cores of porphyroblastic garnet and orthopyroxene record high temperatures and pressures (c. 1000 °C, ≥5.1 GPa), whereas the matrix minerals, including the rims of porphyroblasts, record much lower P–T (c. 4.2 GPa, c. 760 °C). Sm–Nd data give apparent isochron ages of c. 380 Ma and negative εNd(0) values (c.?9). These dates are considered meaningless due to isotopic disequilibrium between garnet cores and the rest of the rocks. The isotopic disequilibrium was probably caused by metasomatism of the peridotites by melt/fluids derived from the coevally subducted crustal materials. On the other hand, the Rb–Sr isotopic systems of phlogopite and clinopyroxene appear to have reached equilibrium and record a cooling age of c. 205 Ma. It is suggested that the garnet peridotites were originally emplaced into a low‐P–T environment prior to the c. 220 Ma continental collision, during which they were subducted together with crustal rocks to mantle depth and subjected to UHP metamorphism. An important corollary is that at least some of the coevally subducted crustal rocks in the Su‐Lu terrane have been subjected to peak metamorphism at P–T conditions much higher than presently estimated (≥2.7 GPa, ≤800 °C).  相似文献   

10.
In this study, in situ U–Pb monazite ages and Lu–Hf garnet geochronology are used to distinguish mineral parageneses developed during Devonian–Carboniferous and Cretaceous events in migmatitic paragneiss and orthogneiss from the Fosdick migmatite–granite complex in West Antarctica. SHRIMP U–Pb monazite ages define two dominant populations at 365–300 Ma (from cores of polychronic grains, dominantly from deeper structural levels in the central and western sectors of the complex) and 120–96 Ma (from rims of polychronic grains, dominantly from the central and western sectors of the complex, and from monochronic grains, mostly from shallower structural levels in the eastern sector of the complex). For five paragneisses and two orthogneisses, Lu–Hf garnet ages range from 116 to 111 Ma, c. 12–17 Ma older than published Sm–Nd garnet ages of 102–99 Ma from three of the same samples. Garnet grains in the analysed samples generally have Lu‐enriched rims relative to Lu‐depleted cores. By contrast, for three of the same samples, individual garnet grains have flat Sm concentrations consistent with high‐T diffusive resetting. Lutetium enrichment of garnet rims is interpreted to record the breakdown of a Lu‐rich accessory mineral during the final stage of garnet growth immediately prior to the metamorphic peak, and/or the preferential retention of Lu in garnet during breakdown to cordierite in the presence of melt concomitant with the initial stages of exhumation. Therefore, garnet is interpreted to be part of the Cretaceous mineral paragenesis and the Lu–Hf garnet ages are interpreted to record the timing of close‐to‐peak metamorphism for this event. For the Devonian–Carboniferous event, phase equilibria modelling of the metasedimentary protoliths to the paragneiss and a diatexite migmatite restrict the peak P–T conditions to 720–800 °C at 0.45–1.0 GPa. For the Cretaceous event, using both forward and inverse phase equilibria modelling of residual paragneiss and orthogneiss compositions, the P–T conditions after decompression are estimated to have been 850–880 °C at 0.65–0.80 GPa. These P–T conditions occurred between c. 106 and c. 96 Ma, determined from Y‐enriched rims on monazite that record the timing of garnet and biotite breakdown to cordierite in the presence of melt. The effects of this younger metamorphic event are dominant throughout the Fosdick complex.  相似文献   

11.
The Ross orogen of Antarctica is an extensive (>3000 km‐long) belt of deformed and metamorphosed sedimentary rocks and granitoid batholiths, which formed during convergence and subduction of palaeo‐Pacific lithosphere beneath East Gondwana in the Neoproterozoic–early Palaeozoic. Despite its prominent role in Gondwanan convergent tectonics, and a well‐established magmatic record, relatively little is known about the metamorphic rocks in the Ross orogen. A combination of garnet Lu–Hf and monazite U–Pb (measured by laser‐ablation split‐stream ICP‐MS) geochronology reveals a protracted metamorphic history of metapelites and garnet amphibolites from a major segment of the orogen. Additionally, direct dating of a common rock‐forming mineral (garnet) and accessory mineral (monazite) allows us to test assumptions that are commonly used when linking accessory mineral geochronology to rock‐forming mineral reactions. Petrography, mineral zoning, thermobarometry and pseudosection modelling reveal a Barrovian‐style prograde path, reaching temperatures of ~610–680 °C. Despite near‐complete diffusional resetting of garnet major element zoning, the garnet retains strong rare earth element zoning and preserves Lu–Hf dates that range from c. 616–572 Ma. Conversely, monazite in the rocks was extensively recrystallized, with concordant dates that span from c. 610–500 Ma, and retain only vestigial cores. Monazite cores yield dates that overlap with the garnet Lu–Hf dates and typically have low‐Y and heavy rare earth element (HREE) concentrations, corroborating interpretations of low‐Y and low‐HREE monazite domains as records of synchronous garnet growth. However, ratios of REE concentrations in garnet and monazite do not consistently match previously reported partition coefficients for the REE between these two minerals. High‐Y monazite inclusions within pristine, crack‐free garnet yield U–Pb dates significantly younger than the Lu–Hf dates for the same samples, indicating recrystallization of monazite within garnet. The recrystallization of high‐Y and high‐HREE monazite domains over >50 Ma likely records either punctuated thermal pulses or prolonged residence at relatively high temperatures (up to ~610–680 °C) driving monazite recrystallization. One c. 616 Ma garnet Lu–Hf date and several c. 610–600 Ma monazite U–Pb dates are tentatively interpreted as records of the onset of tectonism metamorphism in the Ross orogeny, with a more robust constraint from the other Lu–Hf dates (c. 588–572 Ma) and numerous c. 590–570 Ma monazite U–Pb dates. The data are consistent with a tectonic model that involves shortening and thickening prior to widespread magmatism in the vicinity of the study area. The early tectonic history of the Ross orogen, recorded in metamorphic rocks, was broadly synchronous with Gondwana‐wide collisional Pan‐African orogenies.  相似文献   

12.
Major and trace‐element zoning in garnet, in combination with Rb–Sr, Sm–Nd and Lu–Hf geochronology, provide evidence for a protracted garnet growth history for the Zermatt‐Saas Fee (ZSF) ophiolite, western Alps. Four new Lu–Hf ages from Pfulwe (c. 52–46 Ma) and one from Chamois (c. 52 Ma) are very similar to a previously published Lu–Hf age from Lago di Cignana. Overall, the similarity of geochronological and garnet zoning patterns suggests that these three localities had a similar prograde tectonic history, commensurate with their similar structural position near the top of the ZSF. Samples from the lower part of the ZSF at Saas Fee and St. Jacques, however, produced much younger Lu–Hf ages (c. 41–38 Ma). Neither differences in whole‐rock geochemistry, which might produce distinct garnet growth histories, nor rare‐earth‐element zoning in garnet, can account for the age differences in the two suites. This suggests a much later prograde history for the lower part of the ZSF, supporting the idea that it was subducted diachronously. Such a model is consistent with changes in subduction vectors based on plate tectonic reconstructions, where early oblique subduction, which produced long prograde garnet growth, changed to more orthogonal subduction, which corresponds to shorter prograde garnet growth. Six new Rb–Sr phengite ages range from c. 42 to 39 Ma and, in combination with previously published Rb–Sr ages, constrain the timing of the transition from eclogite to upper greenschist facies P–T conditions. The proximity of the ZSF in the Saas Fee region to the underlying continental Monte Rosa unit and the similarity of peak‐metamorphic ages suggest these two units were linked for part of their tectonic history. This in turn indicates that the Monte Rosa may have been partly responsible for rapid exhumation of the ZSF unit.  相似文献   

13.
Dating ultra‐high–pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e. deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here, we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction–collision–exhumation processes, based on eclogites from the Dabie–Sulu orogenic belt in eastern China, one of the largest UHP terranes on Earth. In this study, we integrate garnet Lu–Hf and Sm–Nd ages with zircon and titanite U–Pb ages for three eclogite samples from the Sulu UHP terrane. We combine this age information with Zr‐in‐rutile temperature estimates, and relate these multiple chronometers to different P–T conditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures of UHP conditions and a hotter stage, subsequent to the peak pressure (‘hot exhumation') respectively. Garnet Lu–Hf ages (c. 238–235 Ma) record the initial prograde growth of garnet, while coupled Sm–Nd ages (c. 219–213 Ma) reflect cooling following hot exhumation. The maximum duration of UHP conditions is constrained by the age difference of these two systems in garnet (c. 235–220 Ma). Complementary zircon and titanite U–Pb ages of c. 235–230 Ma and c. 216–206 Ma provide further constraints on the timing of prograde metamorphism and the ‘cold exhumation' respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie–Sulu orogeny. Three sub‐blocks are thus defined by progressively younger garnet ages: western Dabie (243–238 Ma), eastern Dabie–northern Sulu (238–235 Ma) and southern Sulu terranes (225–220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a large UHP terrane can possibly be extended to other suture zones.  相似文献   

14.
In principle, garnet growth rates may be calculated from 87Rb/86Sr and 87Sr/86Sr measurements in garnet subsamples and the surrounding rock matrix. Because of low Rb/Sr, garnet should passively record the matrix decay of 87Rb to 87Sr as a progressive increase in 87Sr/86Sr from core to rim. This concept was tested by collecting Rb‐Sr data for five garnet grains from four major orogenic belts: eastern Vermont (c. 380 Ma), western New Hampshire (c. 320 Ma), southern Chile (c. 75 Ma) and northwestern Italy (c. 35 Ma). Both normal Sr isotope zoning (increasing 87Sr/86Sr from core to rim) and inverse Sr zoning (decreasing 87Sr/86Sr from core to rim) were observed. Garnet and matrix isotope data commonly yielded grossly inaccurate model ages. Incomplete Rb and Sr equilibration among matrix minerals is invoked to explain the deviations between theoretical v. measured zoning patterns and the age disparities. Initially, the reactive matrix is dominated by rapidly equilibrating Rb‐rich mica, which imparts high 87Sr/86Sr values in garnet cores. Progressive participation of slower equilibrating Sr‐rich plagioclase buffers or even reduces 87Sr/86Sr, possibly leading to flat or decreasing 87Sr/86Sr from garnet cores to rims. Unusually high 87Sr/86Sr in garnet in combination with bulk matrix compositions causes erroneously young apparent ages, so metamorphic ages, growth rates, and associated heating and loading rates are likely suspect. Although Rb‐Sr may be the most susceptible because of the profound disparities between mica and feldspar, zircon reactivity might influence the Lu‐Hf system by up to a few per cent. The Sm‐Nd system seems generally immune to these effects. Pseudosection analysis and conventional garnet geochronology, which presume complete matrix equilibration during metamorphism, may require modification to account for differences between whole‐rock v. reactive matrix compositions.  相似文献   

15.
Mesozoic granitic intrusions are widely distributed in the Nanling region,South China.Yanshanian granites are closely connected with the formation of tungsten deposits.The Xihuashan granite is a typica...  相似文献   

16.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

17.
The Plutonic Well Greenstone Belt (PWGB) is located in the Marymia Inlier between the Yilgarn and Pilbara cratons in Western Australia, and hosts a series of major Au deposits. The main episode of Au mineralisation in the PWGB was previously interpreted to have either accompanied, or shortly followed, peak metamorphism in the late Archean at ca 2650 Ma with a later, minor, event associated with the Capricorn Orogeny. Here we present new Pb isotope model ages for sulfides and Rb–Sr ages for mica, as well as a new 207Pb–206Pb age for titanite for samples from the Plutonic Gold Mine (Plutonic) at the southern end of the PWGB. The majority of the sulfides record Proterozoic Pb isotope model ages (2300–2100 Ma), constraining a significant Au mineralising event at Plutonic that occurred >300 Myr later than previously thought. A Rb–Sr age of 2296 ± 99 Ma from muscovite in an Au-bearing sample records resetting or closure of the Rb–Sr system in muscovite at about the same time. A younger Rb–Sr age of 1779 ± 46 Ma from biotite from the same sample may record further cooling, or resetting during a late-stage episode of metasomatism in the PWGB. This could have been associated with the 1820–1770 Ma Capricorn Orogeny, or a late-stage hydrothermal event potentially constrained by a new 207Pb–206Pb age of 1725 ± 26 Ma for titanite in a chlorite–carbonate vein. This titanite age correlates with a pre-existing age for a metasomatic event dated at 1719 ± 14 Ma by U–Pb ages of zircon overgrowths in a sample from the Marymia Deposit. Based on the Pb-isotope data presented here, Au mineralising events in the PWGB are inferred to have occurred at ca 2630, 2300–2100 Ma, during the Glenburgh and Capricorn orogenies, and 1730–1660 Ma. The 2300–2100 Ma event, which appears to have been significant based on the amount of sulfide of this age, correlates with the inferred age for rifting of the Marymia Inlier from the northern margin of the Yilgarn Craton. The texturally-later visible Au may have been deposited during the Glenburgh and Capricorn orogenies.  相似文献   

18.
Polyphase metamorphic paragneisses from the drill core of the continental deep drilling project (KTB; NW Bohemian Massif) are characterized by peak pressures of about 8 kbar (medium‐P metamorphism) followed by strain accumulation at T >650 °C, initially by dislocation creep and subsequently by diffusion creep. U–Pb monazite ages and Rb–Sr whole‐rock data vary in the dm‐scale, indicating Ordovician and Mid‐Devonian metamorphic events. Such age variations are closely interconnected with dm‐scale domainal variations of microfabrics that indicate different predominant deformation mechanisms. U–Pb monazite age variations dependent on microfabric domains exceed grain‐size‐dependent age variations. In ‘mylonitic domains’ recording high magnitudes of plastic strain, dislocation creep and minor static annealing, monazite yields concordant and near concordant Lower Ordovician U–Pb ages, and the Rb–Sr whole‐rock system shows isotopic disequilibrium at an mm‐scale. In ‘mineral growth/mobilisate domains’, in which diffusive mass transfer was a major strain‐producing mechanism promoting diffusion creep of quartz and feldspar, and in which static recrystallization (annealing) reduced the internal free energy of the strained mineral aggregates, concordant U–Pb ages are Mid‐Devonian. Locally, in such domains, Rb–Sr dates among mm3‐sized whole‐rock slabs reflect post‐Ordovician resetting. In ‘transitional domains’, the U–Pb‐ages are discordant. We conclude that medium‐P metamorphism occurred at 484±2 Ma, and a second metamorphic event at 380–370 Ma (Mid‐Devonian) caused progressive strain in the rocks. Dislocation creep at high rates, even at high temperatures, does not reset the Rb–Sr whole‐rock system, while diffusion creep at low rates and stresses (i.e. low ε/Deff ratios), static annealing and the presence of intergranular fluids locally assist resetting. At temperatures above 650 °C, diffusive Pb loss did not reset Ordovician U–Pb monazite ages, and in domains of overall high imposed strain rates and stresses, resetting was not assisted by dynamic recrystallization/crystal plasticity. However, during diffusion creep at low rates, Pb loss by dissolution and precipitation (‘recrystallization’) of monazite produces discordance and Devonian‐concordant U–Pb monazite ages. Hence, resetting of these isotope systems reflects neither changes of temperature nor, directly, the presence or absence of strain.  相似文献   

19.
Monazite is a common accessory phase in felsic granulite ribbon mylonites exposed in the Upper Deck domain of the Athabasca granulite terrane, western Canadian Shield. Field relationships, bulk rock geochemistry and phase equilibria modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 system are consistent with the garnet‐rich rocks representing the residual products of ultrahigh temperature melting of biotite‐bearing paragneisses driven by intraplating of mafic magma in continental lower crust. The c. 2.64–2.61 Ga Y‐rich resorbed monazite cores included in garnet are interpreted as relicts of detrital grains deposited on the Earth's surface after c. 2.61 Ga. Yttrium‐poor monazite domains in garnet are depleted in Sm and Gd and linked to fluid‐absent melting of biotite + plagioclase + quartz ± sillimanite during a prograde loading path from 0.8 to ≥1.4 GPa. The c. 2.61–2.55 Ga Y‐depleted, Th‐rich monazite domains crystallized in the presence of garnet + ternary feldspar ± orthopyroxene + peraluminous melt. The c. 2.58–2.52 Ga monazite rims depleted in Th + Ca and enriched in Eu are linked to localized melt extraction synchronous with growth of high‐pressure (HP) grossular‐rich garnet at the expense of plagioclase during crustal thickening, culminating at >950 °C. Re‐heating and dextral transpressive lower crustal reactivation at c. 1.9 Ga resulted in syn‐kinematic growth of (La + Ce)‐enriched monazite and a second generation of garnet, concurrent with recrystallization of feldspar and orthopyroxene at 1.0–1.2 GPa and 600–700 °C. Monazite grains in this study are marked by positive Eu‐anomalies relative to chondrite. A direct link is implied between Y, Sm, Eu and Gd in monazite and two major phases in continental lower crust: garnet and plagioclase. Positive Eu‐anomalies in lower crustal monazite associated with modally abundant garnet appear to be directly related to Eu‐enrichment and depletions of Y, Sm and Gd that are consequences of garnet growth and plagioclase breakdown during HP melting of peraluminous bulk compositions.  相似文献   

20.
The time‐scales and P–T conditions recorded by granulite facies metamorphic rocks permit inferences about the geodynamic regime in which they formed. Two compositionally heterogeneous cordierite–spinel‐bearing granulites from Vizianagaram, Eastern Ghats Province (EGP), India, were investigated to provide P–T–time constraints using petrography, phase equilibrium modelling, U–Pb geochronology, the rare earth element composition of zircon and monazite, and Ti‐in‐zircon thermometry. These ultrahigh temperature (UHT) granulites preserve discrete compositional layering in which different inferred peak assemblages are developed, including layers bearing garnet–sillimanite–spinel, and others bearing orthopyroxene–sillimanite–spinel. These mineral associations cannot be reproduced by phase equilibrium modelling of whole‐rock compositions, indicating that the samples became domainal on a scale less than that of a thin section, even at UHT conditions. Calculation of the P–T stability fields for six compositional domains within which the main rock‐forming minerals are considered to have attained equilibrium suggests peak metamorphic conditions of ~6.8–8.3 kbar at ~1,000°C. In most of these domains, the subsequent evolution resulted in the growth of cordierite and final crystallization of melt at an elevated (residual) H2O‐undersaturated solidus, consistent with <1 kbar of decompression. Concordant U–Pb ages obtained by SHRIMP from zircon (spread 1,050–800 Ma) and monazite (spread 950–800 Ma) demonstrate that crystallization of these minerals occurred during an interval of c. 250 Ma. By combining LA‐ICP‐MS U–Pb zircon ages with Ti‐in‐zircon temperatures from the same analysis sites, we show that the crust may have remained above 900°C for a minimum of c. 120 Ma between c. 1,000 and c. 880 Ma. Overall, the results suggest that, in the interval 1,050 to 800 Ma, the evolution of the Vizianagaram granulites culminated with UHT conditions from c. 1,000 Ma to c. 880 Ma, associated with minor decompression, before further zircon crystallization at c. 880–800 Ma during cooling to the solidus. However, these rocks are adjacent to the Paderu–Anantagiri–Salur crustal block to the NW that experienced counterclockwise P–T–t paths, and records similar UHT peak metamorphic conditions (7–8 kbar, ~950°C) followed by near‐isobaric cooling, and has a similar chronology during the Neoproterozoic. The limited decompression inferred at Vizianagaram may be explained by partial exhumation due to thrusting of this crustal block over the adjacent Paderu–Anantagiri–Salur crustal block. The residual granulites in both blocks have high concentrations of heat‐producing elements and likely remained hot at mid‐crustal depths throughout a period of relative tectonic quiescence in the interval 800–550 Ma. During the Cambrian Period, the EGP was located in the hinterland of the Denman–Pinjarra–Prydz orogen. A later concordant population of zircon dated at 511 ± 6 Ma records crystallization at temperatures of ~810°C. This age may record a low‐degree of melting due to limited influx of fluid into hot, weak crust in response to convergence of the Crohn craton with a composite orogenic hinterland comprising the Rayner terrane, EGP, and cratonic India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号