首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified in short- and medium-range clusters, thus transportation of particulates along with slow moving air masses was identified. A finding that supports the assumption of long-range transport is that, at background stations, long-range transportation effects were stronger, in comparison to traffic stations, due to less local particle emissions. Short-range trajectories associated to PM transport in Stockholm, Copenhagen and Hamburg were mainly of a continental origin. All three cities were approached by slow moving air masses originated from Poland and the Czech Republic, whereas Copenhagen and Stockholm were also influenced by short-range trajectories from Germany and France and from Jutland Peninsula and Scandinavian Peninsula, respectively. London and Paris are located to the north-west part of Europe. Trajectories of short and medium length arrived to these two megacities mainly through France, Germany, UK and North Atlantic.  相似文献   

2.
Source identification of PM2.5 particles measured in Gwangju, Korea   总被引:1,自引:0,他引:1  
The UNMIX and Chemical Mass Balance (CMB) receptor models were used to investigate sources of PM2.5 aerosols measured between March 2001 and February 2002 in Gwangju, Korea. Measurements of PM2.5 particles were used for the analysis of carbonaceous species (organic (OC) and elemental carbon (EC)) using the thermal manganese dioxide oxidation (TMO) method, the investigation of seven ionic species using ion chromatography (IC), and the analysis of twenty-four metal species using Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS). According to annual average PM2.5 source apportionment results obtained from CMB calculations, diesel vehicle exhaust was the major contributor, accounting for 33.4% of the measured PM2.5 mass (21.5 μg m− 3), followed by secondary sulfate (14.6%), meat cooking (11.7%), secondary organic carbon (8.9%), secondary nitrate (7.6%), urban dust (5.5%), Asian dust (4.4%), biomass burning (2.8%), sea salt (2.7%), residual oil combustion (2.6%), gasoline vehicle exhaust (1.9%), automobile lead (0.5%), and components of unknown sources (3.4%). Seven PM2.5 sources including diesel vehicles (29.6%), secondary sulfate (17.4%), biomass burning (14.7%), secondary nitrate (12.6%), gasoline vehicles (12.4%), secondary organic carbon (5.8%) and Asian dust (1.9%) were identified from the UNMIX analysis. The annual average source apportionment results from the two models are compared and the reasons for differences are qualitatively discussed for better understanding of PM2.5 sources.Additionally, the impact of air mass pathways on the PM2.5 mass was evaluated using air mass trajectories calculated with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory model. Source contributions to PM2.5 collected during the four air mass patterns and two event periods were calculated with the CMB model and analyzed. Results of source apportionment revealed that the contribution of diesel traffic exhaust (47.0%) in stagnant conditions (S) was much higher than the average contribution of diesel vehicle exhaust (33.4%) during the sampling period. During Asian dust (AD) periods when the air mass passed over the Korean peninsula, Asian dust and secondary organic carbon accounted for 25.2 and 23.0% of the PM2.5 mass, respectively, whereas Asian dust contributed only 10.8% to the PM2.5 mass during the AD event when the air mass passed over the Yellow Sea. The contribution of biomass burning to the PM2.5 mass during the biomass burning (BB) event equaled 63.8%.  相似文献   

3.
利用江苏省大气环境监测站点的大气污染物监测数据,分析了2020年初新冠肺炎疫情管控期间(2—3月)主要大气污染物浓度的变化特征。结果显示,相比于2019、2020年疫情管控期间PM_(2.5)、PM_(10)、NO_(2)、SO_(2)、CO浓度的全省平均降幅分别为37.5%、36.9%、31.9%、28.2%和21.2%。严格管控期的2月和生产恢复期的3月,江苏省十三市PM_(2.5)、PM_(10)浓度同比降幅大致相当,呈现出较好的时间连续性和空间均匀性。但各市臭氧浓度同比变化呈现出较大的时空差异。空间上,沿江以南城市南京、无锡、常州、苏州和镇江五市臭氧浓度明显上升,而其他城市臭氧浓度以下降为主;时间上,2月南京等九市臭氧浓度上升,3月徐州等八市臭氧浓度持平或者下降。假设未发生新冠肺炎疫情以及未采取为阻断疫情蔓延而实施的种种举措,在仅考虑近年来大气污染防治政策持续实施的情况下,与预期降幅相比,疫情管控对NO_(2)实况浓度降幅的影响最大,其次是PM_(2.5)和PM_(10)。  相似文献   

4.
In urban areas traffic is the major contributor to atmospheric particulate matter and exposure to these particles currently represents a serious risk to human health. The attention has been recently focused more on the particles of smaller sizes (PM2.5) which penetrate deeper in respiratory system causing severe health effects. Therefore, more information on PM2.5 should be provided, namely concerning morphological and chemical characterization. Aiming further evaluation of the impact of traffic emissions on public health, this work evaluated the influence of traffic on the chemical and morphological characteristics of PM10 and PM2.5, collected at one site influenced by traffic emissions and at one reference site. Chemical and morphological characteristics of 1,000 individual particles were determined by scanning electron microscopy combined with energy dispersive spectrometer (SEM–EDS). Cluster analysis (CA) was used to identify different types of particles that occurred in PM, aiming the identification of the respective emission sources. Traffic PM2.5 were dominated by particles composed of Fe oxides and alloys (67%) which were related to traffic emissions (this percentage was 3.7 times higher than at the background site); in PM2.5–10 the abundance of Fe oxides and alloys were 20% and 0% for the traffic and background sites, respectively. Background PM2.5 were mainly constituted by aluminum silicates (63%) related to natural sources (this percentage was 2.5 times higher than at the traffic site); the abundances of aluminum silicates in PM2.5–10 were 74% and 73% for traffic and background sites, respectively. It was concluded that traffic emissions were mainly present in PM2.5 (the percentage of particles associated to these emissions was 3.4 times higher than in PM2.5–10), while coarse particles were dominated by material of natural origin (the percentage of particles associated was 1.2 and 3.0 times higher than in PM2.5 for traffic and background sites, respectively). Previous results obtained by proton induced X-ray emission (PIXE) were consistent with SEM–EDS analysis that showed to be very useful to complement elemental analysis of different PM2.5 and PM2.5–10.  相似文献   

5.
This paper provides performance evaluation of the EMEP (Cooperative Programme for the Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) model, formulated in [1], and presents model calculation results. A satisfactory agreement is found between calculated and observed PM10 and PM2.5 concentrations (i.e., particulate matter with diameters smaller than 10 and 2.5 μm) and their chemical composition for different parts of Europe for the years 2001–2004. The model manages to reproduce observed regional gradients of background PM10 and PM2.5, with spatial correlations being 0.70 and 0.80, respectively, while the temporal correlation coefficients between modeled and measured daily PM vary mostly between 0.4 and 0.8 at EMEP sites. The agreement between calculated and observed aerosol number concentrations is worse than for mass concentrations. Model calculated PM10 and PM2.5 concentrations and chemical composition in Europe for the year 2004 are presented, as well as their interannual variations in the period 2000–2004. Further, contributions of different sources to PM10 and PM2.5 are estimated. Model results show that in 2004, background PM10 and PM2.5 exceeded EU critical levels and WHO recommended guidelines in a number of European regions. They also show that the transboundary transport contributes considerably to PM pollution in the European countries.  相似文献   

6.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

7.

This study presents the chemical composition (carbonaceous and nitrogenous components) of aerosols (PM2.5 and PM10) along with stable isotopic composition (δ13C and δ15N) collected during winter and the summer months of 2015–16 to explore the possible sources of aerosols in megacity Delhi, India. The mean concentrations (mean?±?standard deviation at 1σ) of PM2.5 and PM10 were 223?±?69 µg m?3 and 328?±?65 µg m?3, respectively during winter season whereas the mean concentrations of PM2.5 and PM10 were 147?±?22 µg m?3 and 236?±?61 µg m?3, respectively during summer season. The mean value of δ13C (range: ??26.4 to ??23.4‰) and δ15N (range: 3.3 to 14.4‰) of PM2.5 were ??25.3?±?0.5‰ and 8.9?±?2.1‰, respectively during winter season whereas the mean value of δ13C (range: ??26.7 to ??25.3‰) and δ15N (range: 2.8 to 11.5‰) of PM2.5 were ??26.1?±?0.4‰ and 6.4?±?2.5‰, respectively during the summer season. Comparison of stable C and N isotopic fingerprints of major identical sources suggested that major portion of PM2.5 and PM10 at Delhi were mainly from fossil fuel combustion (FFC), biomass burning (BB) (C-3 and C-4 type vegitation), secondary aerosols (SAs) and road dust (SD). The correlation analysis of δ13C with other C (OC, TC, OC/EC and OC/WSOC) components and δ15N with other N components (TN, NH4+ and NO3?) are also support the source identification of isotopic signatures.

  相似文献   

8.
2018年1月,利用颗粒物采样器采集武汉市大气PM2.5样品并进行水溶性无机离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)的分析.结果表明,NO3-、SO42-、NH4+是PM2.5中最主要的3种水溶性无机离子,除Mg2+与Ca2+外,PM2.5与WSⅡs (水溶性无机离子)之间的相关性显著,且移动源贡献占主导地位.阴阳离子平衡表明武汉市冬季灰霾期PM2.5呈中性或弱酸性.通过混合单粒子拉格朗日综合轨迹模式模拟并采用分层聚类得出了4种主要的后向气流轨迹及相应的PM2.5和水溶性离子浓度,结果表明区域传输对此次灰霾期影响较大.  相似文献   

9.
Spokane, WA is prone to frequent particulate pollution episodes due to dust storms, biomass burning, and periods of stagnant meteorological conditions. Spokane is the location of a long-term study examining the association between health effects and chemical or physical constituents of particulate pollution. Positive matrix factorization (PMF) was used to deduce the sources of PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) at a residential site in Spokane from 1995 through 1997. A total of 16 elements in 945 daily PM2.5 samples were measured. The PMF results indicated that seven sources independently contribute to the observed PM2.5 mass: vegetative burning (44%), sulfate aerosol (19%), motor vehicle (11%), nitrate aerosol (9%), airborne soil (9%), chlorine-rich source (6%) and metal processing (3%). Conditional probability functions were computed using surface wind data and the PMF deduced mass contributions from each source and were used to identify local point sources. Concurrently measured carbon monoxide and nitrogen oxides were correlated with the PM2.5 from both motor vehicles and vegetative burning.  相似文献   

10.
以武汉市为研究区域,基于实地调查获得典型行业污染源活动水平,以大气污染物排放清单编制技术指南为参考,利用排放因子法建立2014年武汉市大气污染源排放清单,并结合经纬度、人口密度分布、土地利用类型、道路长度等数据将排放清单进行了3 km×3 km网格化处理.结果表明,2014年武汉市SO2、NOx、PM10、PM2.5、CO、BC、OC、VOCs和NH3排放量分别为10.3、17.0、16.3、7.1、63.1、0.6、0.4、19.8和1.6万t.固定燃烧源为SO2排放的主要来源,其贡献率约64%;移动源为NOx的主要来源,其贡献率约51%;颗粒物排放主要来源于扬尘源和工艺过程源;CO和VOCs主要来源于工艺过程源,BC和OC排放均以移动源和生物质燃烧源为主,NH3排放主要来自农业源.污染物排放主要集中在青山区至新洲区一带.  相似文献   

11.
Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different from other megacities, like Beijing. Both the growth rates and decline rates of PM2.5 concentrations in Wuhan were lower than those in Beijing, but the monthly PM2.5 value was approximately twice that in Beijing. Furthermore, the sharp increases of PM2.5 concentrations were often accompanied by strong winds. A high-precision modeling system with an online source-tagged method was established to explore the formation mechanism of five haze episodes. The long-range transport of the polluted air masses from the North China Plain (NCP) was the main factor leading to the sharp increases of PM2.5 concentrations in Wuhan, which contributed 53.4% of the monthly PM2.5 concentrations and 38.5% of polluted days. Furthermore, the change in meteorological conditions such as weakened winds and stable weather conditions led to the accumulation of air pollutants in Wuhan after the long-range transport. The contribution from Wuhan and surrounding cities to the PM2.5 concentrations was determined to be 67.4% during this period. Under the complex regional transport of pollutants from surrounding cities, the NCP, East China, and South China, the five episodes resulted in 30 haze days in Wuhan. The findings reveal important roles played by transregional and intercity transport in haze formation in Wuhan.  相似文献   

12.
The concentrations of air pollutants depend on meteorological conditions and pollutant emission level. From the statistical properties of air pollutants the number of times the daily average concentrations exceed the assigned air quality standard (AQS) can be estimated, as well as the level of reduction of particle matter emission sources required to meet the AQS. In this paper three statistical distributions (lognormal, Weibull and type V Pearson distribution) were used to fit the complete set of PM10 data for the Belgrade urban area during a three-year period (2003–2005). The method of moments and the method of least squares were both used to estimate the parameters of the three theoretical distributions. The type V Pearson distribution represented the PM10 daily average concentration most closely. However, the parent distributions sometimes diverged in predicting a high PM10 concentration and therefore asymptotic distributions of extreme values were used to fit the high PM10 concentration distribution more correctly. This method can successfully predict the return period and exceedances over a critical concentration in succeeding years. The estimated emission source reduction of PM10 to meet the assigned standard varied from 53% to 63% in the Belgrade urban area. The results provide useful information for air quality management and could be used to examine the similarities and differences among air pollution types in diverse areas.  相似文献   

13.
Epidemiological studies initially considered the impact of total solid particles on human health, but according to the acquired knowledge about the worse effect of smaller particles, those studies turned to consider the impact of PM10. However, for the last decade PM2.5 began to be more important, once as they are smaller they can penetrate deeper in the lungs, being possible their trapping in alveoli and worse effects on human health. Therefore, more information on PM2.5 should be provided namely concerning the levels and elemental composition. Considering the relevance of traffic on the emission of particles of small sizes, this work included the detailed characterization of PM10 and PM2.5, sampled at two sites directly influenced by traffic, as well as at two reference sites, aiming a further evaluation of the influence of PM10 and PM2.5 on public health. The specific objectives were to study the influence of traffic emission on PM10 and PM2.5 characteristics, considering concentration, size distribution and elemental composition. PM10 and PM2.5 samples were collected using low-volume samplers; the element analyses were performed by particle induced X-ray emission (PIXE). At the sites influenced by traffic emissions PM10 and PM2.5 concentrations were 7–9 and 6–7 times higher than at the background sites. The presence of 17 elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb) was determined in both PM fractions; particle metal contents were 3–44 and 3–27 times higher for PM10 and PM2.5, respectively, than at the backgrounds sites. The elements originated mostly from anthropogenic activities (S, K, V, Mn, Ni, Zn and Pb) were predominantly present in PM2.5, while the elements mostly originated from crust (Mg, Al, Si and Ca) predominantly occurred in PM2.5–10. The results also showed that in coastal areas sea salt spray is an important source of particles, influencing PM concentration and distributions (PM10 increased by 46%, PM2.5/PM10 decreased by 26%), as well as PM compositions (Cl in PM10 was 11 times higher).  相似文献   

14.
Surface solar radiation (SSR) can affect climate, the hydrological cycle, plant photosynthesis, and solar power. The values of solar radiation at the surface reflect the influence of human activity on radiative climate and environmental effects, so it is a key parameter in the evaluation of climate change and air pollution due to anthropogenic disturbances. This study presents the characteristics of the SSR variation in Nanjing, China, from March 2016 to June 2017, using a combined set of pyranometer and pyrheliometer observations. The SSR seasonal variation and statistical properties are investigated and characterized under different air pollution levels and visibilities. We discuss seasonal variations in visibility, air quality index (AQI), particulate matter (PM10 and PM2.5), and their correlations with SSR. The scattering of solar radiation by particulate matter varies significantly with particle size. Compared with the particulate matter with aerodynamic diameter between 2.5 μm and 10 μm (PM2.5?10), we found that the PM2.5 dominates the variation of scattered radiation due to the differences of single-scattering albedo and phase function. Because of the correlation between PM2.5 and SSR, it is an effective and direct method to estimate PM2.5 by the value of SSR, or vice versa to obtain the SSR by the value of PM2.5. Under clear-sky conditions (clearness index ≥0.5), the visibility is negatively correlated with the diffuse fraction, AQI, PM10, and PM2.5, and their correlation coefficients are ?0.50, ?0.60, ?0.76, and ?0.92, respectively. The results indicate the linkage between scattered radiation and air quality through the value of visibility.  相似文献   

15.
The chemical composition of PM10 and PM2.5 samples collected during two seasonal monitoring campaigns at residential, urban and industrial Apulia Region- sites was investigated. Ionic fraction, carbonaceous compounds and Polycyclic Aromatic Hydrocarbons were determined for all samples. High correlations among PM data collected in the investigated sites suggested the regional character of particulate matter. It was also confirmed by five days back trajectories analysis. Moreover, no significant seasonal trend in PM mass concentration was observed in the investigated sites. These results, relevant for the area under investigations, were not observed in the North of Italy and Europe and allow to conclude that PM10 and PM2.5 cannot be considered ‘good’ indicators for the evaluation of local anthropic contributions to air quality. On the contrary, the high levels of Polycyclic Aromatic Hydrocarbons found in Taranto sampling sites suggested that PAHs can be a better indicator for this purpose. This result is also relevant in order to weigh the importance of industrial area and to suggest right policy control to decision makers.  相似文献   

16.
范凡  陆尔  葛宝珠  王自发 《气象科学》2019,39(2):178-186
为了解不同程度的降水对江浙沪地区大气PM_(2.5)的清除作用,搜集了2014—2016年该地区41个城市的降水和PM_(2.5)观测数据,通过对比2 a非降水和全时段PM_(2.5)平均浓度的差异,发现前者显著高于后者,说明降水对该地区PM_(2.5)具有清除作用。利用降水前与降水期间PM_(2.5)的浓度差异作为降水对PM_(2.5)的清除率,降水后与降水期间的浓度差异作为雨后浓度回升的增加率,分别研究了目标区域不同时期、不同降雨量以及不同降雨时长对PM_(2.5)的清除效果。结果显示:(1)与江浙沪南部地区不同的是,北部地区降水清除率与降水前浓度存在正相关,降水后浓度的增加与当地的排放量呈正相关。(2)当降水量为30 mm或者降水时长为36 h时,清除率增幅减缓,说明降水对PM_(2.5)的清除效率存在着阈值。  相似文献   

17.
The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002–2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM10, PM2.5 and PM1 levels at MSY during 2002–2007 were 16, 14 and 11 µg/m3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM2.5 and PM10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.  相似文献   

18.
Results are presented of monitoring measurements of the mass concentration of PM10 (particles with the size of less than 10 μm) and PM2.5 (less than 2.5 μm) fine-dispersed aerosol fractions at the Sainshand and Zamyn-Üüd stations located in the Gobi Desert of Mongolia. Revealed are the annual variations of the mass concentration of PM10 and PM2.5 fine-dispersed aerosol fractions at these stations in 2008. The maximum values of monthly mean concentration during the year were observed in May in the period of dust storms. On the days with the steady calm weather, the mass concentrations of PM10 and PM2.5 varied within 5–8 μg/m3 (PM10) and 3–5 μg/m3 (PM2.5) at the Sainshand station. During the dust storms, the maximum values of concentration exceeded 1400 μg/m3 (PM10) and 380 μg/m3 (PM2.5) that is by 28 (PM10) and 15 (PM2.5) times higher than the maximum permissible concentration for the European Union. Results are given of studying the frequency and duration of dust storms in recent 20 years (1991–2010) in the Eastern Gobi Desert.  相似文献   

19.
基于国家生态环境部发布的环境空气质量监测数据等资料,采取调查研究与量化分析相结合的方法,对关中地区西安、渭南、咸阳、铜川、宝鸡5市空气质量的总体特征和空间差异进行研究.结果表明:颗粒污染物普遍严重超标,其中PM2.5和PM10分别超标91%和77%;空气污染具有明显的季节性,冬季的首要污染物是PM2.5和PM10,夏季的主要污染物是O3;关中空气污染受地形、气象条件和工业排放、采暖、施工、道路扬尘、汽车尾气等人类活动综合影响,大气污染具有相似性,同时表现出一定的差异性.  相似文献   

20.
A study has been carried out on water soluble ions, trace elements, as well as PM2.5 and PM2.5–10 elemental and organic carbon samples collected daily from Central Taiwan over a one year period in 2005. A source apportionment study was performed, employing a Gaussian trajectory transfer coefficient model (GTx) to the results from 141 sets of PM2.5 and PM2.5–10 samples. Two different types of PM10 episodes, local pollution (LOP) and Asian dust storm (ADS) were observed in this study. The results revealed that relative high concentrations of secondary aerosols (NO3, SO42− and NH4+) and the elements Cu, Zn, Cd, Pb and As were observed in PM2.5 during LOP periods. However, sea salt species (Na+ and Cl) and crustal elements (e.g., Al, Fe, Mg, K, Ca and Ti) of PM2.5–10 showed a sharp increase during ADS periods. Anthropogenic source metals, Cu, Zn, Cd, Pb and As, as well as coarse nitrate also increased with ADS episodes. Moreover, reconstruction of aerosol compositions revealed that soil of PM2.5–10 elevated approximately 12–14% in ADS periods than LOP and Clear periods. A significantly high ratio of non-sea salt sulfate to elemental carbon (NSS-SO42−/EC) of PM2.5–10 during ADS periods was associated with higher concentrations of non-sea-salt sulfates from the industrial regions of China. Source apportionment analysis showed that 39% of PM10, 25% of PM2.5, 50% of PM2.5–10, 42% of sulfate and 30% of nitrate were attributable to the long range transport during ADS periods, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号