首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
河北平原地下水锶同位素形成机理   总被引:5,自引:0,他引:5  
为了研究河北平原地下水锶同位素的来源与形成机理, 对所采水样进行了分析.研究了87Sr/86Sr比值“时间积累效应”: 随着地下水年龄和埋深的增大而增大; 与地下水中过剩4Heexc呈正相关关系, 与δ18O和δD呈负相关关系.探讨了Sr2+与87Sr/86Sr比值的关系, 将地下水分为3类: (1) 中等Sr2+含量与高87Sr/86Sr比值水(Ⅰ类水); (2) 低Sr2+含量与高87Sr/86Sr比值水(Ⅱ类水); (3) 高Sr2+含量与低87Sr/86Sr比值水(Ⅲ类水), 即热水.通过综合分析认为: (1) 河北平原第四系地下水中的放射成因Sr是由富含Na和Rb的硅酸盐矿物风化作用提供的, 主要矿物为斜长石; (2) 黄骅港热水中的放射成因Sr是由碳酸盐溶解形成的, 87Sr/86Sr比值低, Sr/Na比值大; (3) 补给区地下水是由流经火成岩和变质岩区地下水的侧向补给的, 87Sr/86Sr比值中等.第三系地下水放射成因Sr的来源及形成机理尚须进一步研究.   相似文献   

2.
鄂尔多斯白垩系自流水盆地北部为沙漠高原区,南部为黄土高原区。区内经济以农业和畜牧业为主,地下水的污染较弱。地下水中Sr来源于含Sr矿物的溶解。因此,可以利用Sr及^87Sr/^86Sr比值来研究水岩作用和地下水的演化。采自盆地20个Sr及其同位素样品的分析结果表明:在区域上^87Sr/^86Sr比值是不均匀的,西南部^87Sr/^86Sr比值较大(0.711002-0.711570),其他地区。^87Sr/^86Sr比值较小(0.710378-0.710646);在局域地下水系统中,埋深小于100m的浅层地下水,Sr含量较低,^87Sr/^86Sr比值较大,而埋深大于100m的深层地下水,Sr含量较高,^87Sr/^86Sr比值较小,并且沿地下水径流方向,sr的浓度越来越高。苏贝淖湖是自流水盆地北部局域地下水系统的一个排泻区,湖水Sr含量较低,而^87Sr/^86Sr比值较大,其Sr同位素组成特征与浅层地下水一致,表明湖水来源于浅层地下水。  相似文献   

3.
通过对Kashan区块上库姆组碳酸盐围岩与裂缝或晶洞充填方解石的^87Sr/^86Sr,δ^18O和δ^13C对比研究,确定含烃流体的可能来源。裂缝或晶洞充填方解石的^87Sr/^86Sr,δ^18O/‰(PDB)和δ^18O/‰(PDB)分别为:0.7074~0.7087,-12.7~-6.214和0.630~1.883。方解石的。^87Sr/^86Sr,δ^18O特征和流体包裹体较高的均一温度(120℃~217℃),说明舍烃流体为来自休罗系Shemshak组的贫锶贫氧流体(^87Sr/^86Sr=0.7074,δ^18OPDB=-12.17‰)、富锶富氧流体(^87Sr/^86Sr=0.7087,δ^18OPDB=-6.214‰)及这两种流体混合形成的混合流体。  相似文献   

4.
本文根据河北平原地下水锶同位素比值等测试结果讨论了其演变特征:除个别水点外,地下水锶同位素比值均大于现代海水的均值(0.709073),第四系地下水的锶同位素比值均大于热水点值,且随着埋深的增大、沿迳流途径从补给区到排泄区系统增大,这同锶同位素比值与碳-14年水分三类进行了分析。在平原中部,呈NE—SW方向,出现了一个锶同龄呈正相关关系是一致的。本文根据锶同位素比值及锶离子浓度特点将该区地下位素比值的高值带,大致与子牙河的流向一致.即献县-青县-线.该咨料为河北平原第四第地下水演化提供了新的证据.  相似文献   

5.
河北平原地下水锶同位素特征   总被引:3,自引:1,他引:3  
本文根据28个样品的测试结果,介绍了河北平原地下水的87Sr/86Sr比值。水的87Sr/86Sr比值变化很大。这些Sr同位素组成的差别反映了平原中水流受区域地质条件控制。文中讨论了Sr同位素的6个分布特征。河北平原地下水的87Sr/86Sr比值均大于现代海水的平均值(0.709073)。平原内第四系地下水(Q4-Q1)从补给区到排泄区的87Sr/86Sr比值随着距离(年龄)增大而系统增大。水文学上年轻的水显示非放射性成因的(初始的)87Sr/86Sr比值,而较老的水则具有明显的放射成因,可达0.71527(δ87Sr为8.74‰)这很可能是通过溶解含水层硅酸盐而增加大陆Sr的结果。  相似文献   

6.
桂林地区岩溶水87Sr/86Sr特征   总被引:2,自引:0,他引:2  
王涛  王增银 《地球学报》2005,26(Z1):299-302
锶是岩石圈上部含量最大的微量元素,其元素及其同位素化学性质都比较稳定。不同水岩作用条件下,锶元素含量及其同位素值都不一样。本文通过对桂林地区的两个典型岩溶地下河系统不同类型地下水样87Sr/86Sr值和Sr含量的分析,得出;流经不同岩层的地下水其87Sr/86Sr值和Sr含量不同,同一地下河系统中不同类型地下水的87Sr/86Sr值Sr含量不同,其值的差异由岩性和水岩作用决定。说明87Sr/86Sr值能反映地下水的形成、径流和混合作用,是较理想的示踪剂,在岩溶水研究中具有很广阔的应用前景。  相似文献   

7.
为查明高密市高氟地下水的地球化学及水文地球化学背景,了解地下水中氟的来源、运移及富集规律,对采集到的382件岩土样品,300件地下水样品进行了主要组分的分析测试;将F-与岩土类别,地下水pH值,Na+、Ca2+等阳离子以及Cl-、SO2-4等阴离子进行相关性分析;对F-在高密市的水平分布特征和垂向分布特征进行了细致研究。结果表明:该区地下水中主要供氟源为南部丘陵基岩区的砂岩、砾岩、泥岩及火山岩、火山碎屑岩;土壤氟含量水平分布由南向北递增,垂向分布为上高下低;高氟水中F-含量与Na+呈正相关、与Ca2+呈负相关,与Mg2+无明显相关性,与阴离子含量无明显相关性,与矿化度无明显相关性,与pH值呈微弱正相关。通过开展高氟区地球化学和水文地球化学背景研究,对地氟病高发区高氟地下水的形成、运移与富集研究起到一定的参考作用。  相似文献   

8.
本文以生命必需元素氟为研究对象,选择地方性氟病分布典型、地下水类型分布全面的山东省全境为研究区,依托2006~2016年间采集的4321件地下水无机分析数据,综合运用数理统计分析、离子比值分析、水化学平衡体系分析,详细研究了山东省高氟地下水的分布特征和富集机制.结果表明:山东省浅层高氟地下水集中连片分布于胶莱盆地和鲁西南平原地区地势低洼地带,地下水氟含量超过1 mg/L的分布面积13227 km2,最大值22 mg/L;深层承压孔隙水高氟区集中分布于平原盆地中心的德州、滨州、菏泽等地深层承压孔隙水水位降落漏斗区,氟含量超过2 mg/L的分布面积15086 km2,最大值7.5 mg/L,地下水开采是驱动深层承压孔隙水氟富集的主要因素;不同类型地下水氟平均含量从大到小依次是深层承压孔隙水、浅层松散岩类孔隙水、侵入岩变质岩基岩裂隙水、碳酸盐岩类裂隙岩溶水、碎屑岩类孔隙裂隙水;深层承压孔隙水F-含量与Ca2+含量呈明显的负相关,其他类型地下水F-含量与Ca2+含量相关关系不明显.综合得出:山东省高氟地下水形成受地貌与地质构造部位、含水介质地球化学特性、人类地下水开采等三方面因素共同驱动,含氟矿物的溶解是地下水中氟的物质来源,淋滤、蒸发浓缩、水岩相互作用使得地下水氟含量进一步升高,氟-钙拮抗作用机制最终决定地下水中氟含量.此研究揭示了控制不同类型地下水氟富集的关键因素,深化了氟在地下水中化学行为的认识.  相似文献   

9.
锶元素地球化学在水文地质研究中的应用进展   总被引:12,自引:4,他引:12  
国外学者已广泛应用Sr^2 ,c(Sr)/c(Ca)或c(Ca)/c(Sr),n(^87Sr)/n^(86Sr)作为示踪元素研究地表河水的来源组成、监测地下水的污染程度、确定含水层的越流补给量和恢复洞穴沉积环境等。国内90年代以后开始应用锶和锶同位素研究河流的补给来源,探讨泉群流动系统和应用c(Sr)/c(Ca)、c(Sr)/c(Mg)研究岩溶水系统,并取得了较好的效果;介绍了目前正在开展的应用c(Sr)/c(Ca)、c(Sr)/c(Mg)、n(^87Sr)/n(^86Sr)研究西南岩溶山区地下河水组成的思路和方法。展望了锶元素地球化学在水文地质调查和地下水资源评价中的应用前景。  相似文献   

10.
西天山石炭纪火山岩岩石学及Sr-Nd同位素地球化学研究   总被引:18,自引:34,他引:18  
朱永峰  周晶郭璇 《岩石学报》2006,22(5):1341-1350
西天山石炭纪火山岩连续从玄武岩、粗面质玄武安山岩、粗面安山岩、粗面岩一直演化到流纹岩。不同地区火山岩的同位素组成差别很大。出露在拉尔敦达坂一带的晚石炭世粗面安山岩-粗面岩具有较高的εNd(t)值(+2、68~+4.29)和较高的初始^87Sr/^86Sr值(0、7015~0.7051)。新源城南的早石炭世粗面安山岩.流纹岩具有相对较低的εNd(t)值(-0.22~+0.87)和变化较大的初始^87Sr/^86Sr值(0.7045~0.7068)。早石炭世玄武岩的初始^87Sr/^86Sr值较低且变化范围较小(0.7045~0.7058),εNd(t)值高且变化范围大(+0.89~+3.04)。本文的同位素地球化学资料以及前期的年代学研究表明,西天山晚泥盆-早石炭世岛弧自西向东逐渐消亡,取而代之的是晚石炭世碰撞后富钾岩浆的喷发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号