首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent research has demonstrated that the undifferenced integer ambiguities can be recovered using products from a network solution. The standard dual-frequency PPP integer ambiguity resolution consists of two aspects: Hatch-Melbourne-Wübbena wide-lane (WL) and ionosphere-free narrow-lane (NL) integer ambiguity resolution. A major issue affecting the performance of dual-frequency PPP applications is the time it takes to fix these two types of integer ambiguities, especially if the WL integer ambiguity resolution suffers from the noisy pseudorange measurements and strong multipath effects. With modernized Global Navigation Satellite Systems, triple-frequency measurements will be available to global users and an extra WL (EWL) model with very long wavelength can be formulated. Then, the easily resolved EWL integer ambiguities can be used to construct linear combinations to accelerate the PPP WL integer ambiguity resolution. Therefore, we propose a new reliable procedure for the modeling and quality control of triple-frequency PPP WL and NL integer ambiguity resolution. First, we analyze a WL integer ambiguity resolution model based on triple-frequency measurements. Then, an optimal pseudorange linear combination which is ionosphere-free and has minimum measurement noise is developed and used as constraint in the WL and the NL integer ambiguity resolution. Based on simulations, we have investigated the inefficiency of dual-frequency WL integer ambiguity resolution and the performance of EWL integer ambiguity resolution. Using almanacs of GPS, Galileo and BeiDou, the performances of the proposed triple-frequency WL and NL models have been evaluated in terms of success rate. Comparing with dual-frequency PPP, numerical results indicate that the proposed triple-frequency models can outperform the dual-frequency PPP WL and NL integer ambiguity resolution. With 1 s sampling rate, generally, only several minutes of data are required for reliable triple-frequency PPP WL and NL integer ambiguity resolution. Under benign observation situations and good geometries, the integer ambiguity can be reliably resolved even within 10 s.  相似文献   

2.
序贯平差方法是长距离网络RTK基准站间模糊度固定中的常用方法,该方法充分利用了卫星间的相关信息以及多余观测量,是理论严密且十分有效的方法。一般文献中只给出了参数不变的序贯平差公式。但是,观测过程中的参数是不断变化的,参数不变的序贯平差公式并不适用于网络RTK系统。此外,对于序贯平差而言,由于一般不存储历史观测值,因此,模糊度固定后无法将其带入原观测方程重新平差,这导致法方程更新困难。针对以上问题,本文给出了参数变化的序贯平差公式及严密的推导过程,并给出了模糊度固定后法方程的更新方法。结合长距离网络RTK基准站间模糊度固定问题,通过实验,证明了给出的序贯平差公式和法方程更新方法正确有效。  相似文献   

3.
随着全球卫星导航系统(global navigation satellite system,GNSS)进入多系统时代,空中导航卫星的可见卫星数不断增加,中国北斗卫星导航系统(BeiDou navigation satellite system,BDS)已开始面向用户提供三频导航信号,这都有利于改善单历元实时动态定位(real-time kinematic,RTK)的精度和可靠性。中长基线单历元RTK通常采用电离层无关组合算法,但是该方法将观测噪声进行了放大,模糊度固定成功率随着基线长度的增加而明显降低。提出一种BDS/GPS(global positioning system)中长基线单历元多频RTK定位算法,先以较高成功率快速固定BDS的两个超宽巷模糊度,继而通过简单变换得到BDS宽巷模糊度,然后将其辅助提高GPS宽巷模糊度固定成功率,最后采用将电离层延迟误差参数化的策略以提高BDS/GPS窄巷模糊度固定成功率。结合实测数据进行验证分析,结果表明本文算法是可行的。  相似文献   

4.
As the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region, it is important to better understand and demonstrate the benefits of combining triple-frequency BDS with dual-frequency GPS observations for network-based real-time kinematic (NRTK) services. Undifferenced NRTK is a new NRTK service mode, it extends the concept of NRTK by not requiring reference station and specified reference satellite at the rover processing. In order to realize the undifferenced NRTK service, a strategy for real-time modeling the undifferenced (UD) augmentation information is given, in which the fixed double-differenced ambiguities are transformed into UD ones with the help of datum settings. Since this strategy is insensitive to existing ephemeris products, it is applicable to the services of current BDS regional reference networks. Furthermore, a processing scheme for ambiguity resolution (AR) with arbitrary-frequency observations is also presented in detail. An instantaneous and reliable BDS + GPS positioning service can be provided to the rovers in undifferenced NRTK processing mode. With the data collected at 31 stations from a continuously operating reference station network in Guangdong Province (GDCORS) of China, the efficiency of the proposed approaches using combined BDS and GPS observations is confirmed. For three rover stations during days 327–329, a total of 12,960 1-min tests were performed separately to demonstrate the performance of AR. Thanks to the dynamically refined priori information of residual tropospheric and ionospheric error, and the availability of more satellites and observations, the AR fixing rates of combined BDS and GPS systems improve by 13 to 65%, compared with those of the GPS-only system using the traditional WL-L1-IF scheme. The positioning accuracy has also significantly improved.  相似文献   

5.
基于区域参考站网的网络实时动态定位(real-time kinematic,RTK)方法是实现全球定位系统(global positioning system,GPS)、北斗卫星导航系统(BeiDou satellite navigation system,BDS)高精度定位的主要手段。研究了一种长距离GPS/BDS双系统网络RTK方法,首先采用长距离参考站网GPS/BDS多频观测数据确定宽巷整周模糊度,利用引入大气误差参数的参数估计模型解算GPS/BDS双差载波相位整周模糊度;然后按照长距离参考站网观测误差特性的不同,分类处理参考站观测误差,利用误差内插法计算流动站观测误差,以改正流动站GPS/BDS双系统载波相位观测值的观测误差;最后使用流动站多频载波相位整周模糊度解算方法确定GPS/BDS载波相位整周模糊度并解算位置参数。使用长距离连续运行参考站(continuously operating reference stations,CORS)网的实测数据进行实验,结果表明,该方法能够利用长距离GPS/BDS参考站网实现流动站的厘米级定位。  相似文献   

6.
为了充分利用各频率观测值信息,提出了一种非差非组合的北斗卫星导航系统长距离基准站间整周模糊度解算方法。首先,直接利用不同频率的观测值建立误差观测方程,并采用随机游走策略估计相对天顶对流层湿延迟误差和电离层延迟误差,增加历元间的约束;然后,采用一种非差整周模糊度实时线性计算方法,依次得到基准站网当前历元所有卫星的非差整周模糊度,解决了在基准星变换时,模糊度需要承接或者重新进行法方程叠加的问题;最后,使用实测数据进行方法验证,结果表明,各基准站模糊度平均固定速度为20个历元(采样间隔1 s),可快速实现基准站载波相位整周模糊度解算。由于所提方法充分利用了各频率观测值信息,避免了线性组合放大噪声对整周模糊度固定的影响,其模糊度固定成功率与无电离层组合法相比有较大的提高。  相似文献   

7.
基准站模糊度固定是网络RTK系统初始化的前提条件。文中使用非组合方法来固定基准站间模糊度。该方法相对于传统组合方法而言具有以下3个优点:1)基于非组合观测值,避免了观测噪声的放大;2)将L2模糊度变换为L1与宽巷模糊度WL(Wide-Lane)模糊度的差值,同步求解WL和L1模糊度浮点解,简化了计算过程;3)WL模糊度由平差得到,部分模糊度固定后,加快了其他WL模糊度的固定速度。实验结果表明,非组合方法相对于传统方法而言,WL模糊度固定速度提高了24.5%;L1模糊度固定正确率提高了7.9%。可以认为,在网络RTK初始化方面,非组合方法要优于传统方法。  相似文献   

8.
Although integer ambiguity resolution (IAR) can improve positioning accuracy considerably and shorten the convergence time of precise point positioning (PPP), it requires an initialization time of over 30 min. With the full operation of GLONASS globally and BDS in the Asia–Pacific region, it is necessary to assess the PPP–IAR performance by simultaneous fixing of GPS, GLONASS, and BDS ambiguities. This study proposed a GPS + GLONASS + BDS combined PPP–IAR strategy and processed PPP–IAR kinematically and statically using one week of data collected at 20 static stations. The undifferenced wide- and narrow-lane fractional cycle biases for GPS, GLONASS, and BDS were estimated using a regional network, and undifferenced PPP ambiguity resolution was performed to assess the contribution of multi-GNSSs. Generally, over 99% of a posteriori residuals of wide-lane ambiguities were within ±0.25 cycles for both GPS and BDS, while the value was 91.5% for GLONASS. Over 96% of narrow-lane residuals were within ±0.15 cycles for GPS, GLONASS, and BDS. For kinematic PPP with a 10-min observation time, only 16.2% of all cases could be fixed with GPS alone. However, adding GLONASS improved the percentage considerably to 75.9%, and it reached 90.0% when using GPS + GLONASS + BDS. Not all epochs could be fixed with a correct set of ambiguities; therefore, we defined the ratio of the number of epochs with correctly fixed ambiguities to the number of all fixed epochs as the correct fixing rate (CFR). Because partial ambiguity fixing was used, when more than five ambiguities were fixed correctly, we considered the epoch correctly fixed. For the small ratio criteria of 2.0, the CFR improved considerably from 51.7% for GPS alone, to 98.3% when using GPS + GLONASS + BDS combined solutions.  相似文献   

9.
长距离网络RTK是实现GPS/BDS高精度实时定位的主要手段之一,其核心是长距离参考站网GPS/BDS整周模糊度的快速准确确定。本文提出了一种长距离GPS/BDS参考站网载波相位整周模糊度解算方法,首先利用GPS双频观测数据计算和确定宽巷整周模糊度,同时利用BDS的B2、B3频率观测值确定超宽巷整周模糊度。然后建立GPS载波相位整周模糊度和大气延迟误差的参数估计模型,附加双差宽巷整周模糊度的约束,解算双差载波相位整周模糊度,并建立参考站网大气延迟误差的空间相关模型。根据B2、B3频率的超宽巷整周模糊度建立包含大气误差参数的载波相位整周模糊度解算模型,利用大气延迟误差空间相关模型约束BDS双差载波相位整周模糊度的解算。克服了传统的使用无电离层组合值解算整周模糊度的不利影响。采用实测长距离CORS网GPS、BDS多频观测数据进行算法验证,试验结果证明该方法可实现长距离参考站网GPS/BDS载波相位整周模糊度的准确固定。  相似文献   

10.
Triple-frequency signals have thus far been available for all satellites of BeiDou and Galileo systems and for some GPS satellites. The main benefit of triple-frequency signals is their formation of extra-wide-lane (EWL) combinations whose ambiguities can be instantaneously fixed for several 10–100 km baselines. Yet, this benefit has not been fully exploited and only used as a constraint for narrow-lane (NL) ambiguity resolution (AR) in most previous studies. In this study, we comprehensively investigate the real-time kinematic (RTK) capabilities of EWL observations, also referred to as EWL RTK (ERTK). We begin by mathematically expressing the ease of EWL AR and the difficulty of NL AR, respectively, using a numerical demonstration. We then present the mathematical models for ERTK including the ionosphere-ignored, ionosphere-float and ionosphere-smoothed types. The experiments are conducted using a four-station network of real triple-frequency BeiDou data with baseline lengths from 33 to 75 km. The results show that the ionosphere-ignored ERTK achieves real-time solutions with a horizontal accuracy of about 10 cm. Although the ionosphere-float ERTK solutions are very noisy, they can be quickly improved at the centimetre level by further applying the ionosphere-smoothed model. Note that such accurate results are very promising and already satisfy many applications without complicated NL AR. To the best of our knowledge, this is the first comprehensive study to make full use of EWL observations of triple-frequency signals on RTK.  相似文献   

11.
Integer ambiguity resolution (IAR) appreciably improves the position accuracy and shortens the convergence time of precise point positioning (PPP). However, while many studies are limited to GPS, there is a need to investigate the performance of GLONASS PPP ambiguity resolution. Unfortunately, because of the frequency-division multiple-access strategy of GLONASS, GLONASS PPP IAR faces two obstacles. First, simultaneously observed satellites operate at different wavelengths. Second and most importantly, distinct inter-frequency bias (IFB) exists between different satellites. For the former, we adopt an undifferenced method for uncalibrated phase delay (UPD) estimation and proposed an undifferenced PPP IAR strategy. We select a set of homogeneous receivers with identical receiver IFB to perform UPD estimation and PPP IAR. The code and carrier phase IFBs can be absorbed by satellite wide-lane and narrow-lane UPDs, respectively, which is in turn consistent with PPP IAR using the same type of receivers. In order to verify the method, we used 50 stations to generate satellite UPDs and another 12 stations selected as users to perform PPP IAR. We found that the GLONASS satellite UPDs are stable in time and space and can be estimated with high accuracy and reliability. After applying UPD correction, 91 % of wide-lane ambiguities and 99 % of narrow-lane ambiguities are within (?0.15, +0.15) cycles of the nearest integer. After ambiguity resolution, the 2-hour static PPP accuracy improves from (0.66, 1.42, 1.55) cm to (0.38, 0.39, 1.39) cm for the north, east, and up components, respectively.  相似文献   

12.
Double-differenced (DD) ambiguities between overlapping frequencies from different GNSS constellations can be fixed to integers if the associated differential inter-system biases (DISBs) are well known. In this case, only one common pivot satellite is sufficient for inter-system ambiguity resolution. This will be beneficial to ambiguity resolution (AR) and real-time kinematic (RTK) positioning especially when only a few satellites are observed. However, for GPS and current operational BDS-2, there are no overlapping frequencies. Due to the influence of different frequencies, the inter-system DD ambiguities still cannot be fixed to integers even if the DISBs are precisely known. In this contribution, we present an inter-system differencing model for combined GPS and BDS single-frequency RTK positioning through real-time estimation of DISBs. The stability of GPS L1 and BDS B1 DISBs is analyzed with different receiver types. Along with parameterization and using the short-term stability of DISBs, the DD ambiguities between GPS and BDS pivot satellites and the between-receiver single-difference ambiguity of the GPS pivot satellite can be estimable jointly with the differential phase DISB term from epoch to epoch. Then the inter-system differencing model can benefit from the near time-constant DISB parameters and thus has better multi-epoch positioning performance than the classical intra-system differencing model. The combined GPS and BDS single-frequency RTK positioning performance is evaluated with various simulated satellite visibilities. It will be shown that compared with the classical intra-system differencing model, the proposed model can effectively improve the positioning accuracy and reliability, especially for severely obstructed situations with only a few satellites observed.  相似文献   

13.
三步法确定网络RTK基准站双差模糊度   总被引:4,自引:2,他引:4  
提出了一种新的由宽巷模糊度、窄巷模糊度到原始载波模糊度逐步固定地确定基准站间的双差模糊度的三步法,该方法不需线性化,不需解求方程组,双差观测值之间相互独立,且与基线长度无关,并用实例证明了该方法确定基准站模糊度速度快、可靠性高的特点。  相似文献   

14.
The first results of the short baseline single-epoch kinematic positioning based on dual-frequency real BeiDou/GPS data are presented. The performance of the BeiDou/GPS single-epoch positioning is demonstrated in both static and kinematic modes and compared with corresponding GPS-only performance. It is shown that the availability and reliability of the single-frequency BeiDou/GPS and dual-frequency BeiDou single-epoch kinematic positioning are comparable to those of the dual-frequency GPS. The fixed rate and reliability of ambiguity resolution for the single- and dual-frequency BeiDou/GPS are remarkably improved as compared to that of GPS-only, especially in case of high cutoff elevations. For positioning accuracy with fixed ambiguities, the BeiDou/GPS single-epoch solutions are improved by 23 and 4 % relative to the GPS-only case for two short baseline tests of 8 km, respectively. These results reveal that dual-frequency BeiDou real-time kinematic (RTK) is already applicable in Asia–Pacific areas and that single-frequency BeiDou/GPS RTK is also achievable but only with initialization of several seconds. More promisingly, the dual-frequency BeiDou/GPS RTK can overcome the difficulties with GPS-only RTK under the challenging conditions assuming, of course, that the additional BeiDou satellites are visible.  相似文献   

15.
北斗三频宽巷组合网络RTK单历元定位方法   总被引:2,自引:1,他引:1  
利用三频超宽巷/宽巷模糊度波长较长从而易于固定的优势,提出了一种基于北斗三频宽巷组合的网络RTK单历元定位方法。数据处理中心利用基准站实时生成并播发包含双差对流层和电离层延迟改正信息的虚拟观测值;用户站利用载波、伪距组合及分步解算的TCAR方法基于单个卫星对、单历元可靠固定两个超宽巷或宽巷模糊度。最后利用已固定模糊度且噪声最小的宽巷观测值和内插得到的大气延迟改正进行实时动态定位解算。试验结果表明,对于本文提出的网络RTK单历元定位方法,用户站宽巷模糊度单历元解算准确率高于99.9%,统计的定位中误差平面为3~4cm,高程方向约为5cm。  相似文献   

16.
The main challenge of ambiguity resolution in precise point positioning (PPP) is that it requires 30 min or more to succeed in the first fixing of ambiguities. With the full operation of the BeiDou (BDS) satellite system in East Asia, it is worthwhile to investigate the performance of GPS + BDS PPP ambiguity resolution, especially the improvements of the initial fixing time and ambiguity-fixing rate compared to GPS-only solutions. We estimated the wide- and narrow-lane fractional-cycle biases (FCBs) for BDS with a regional network, and PPP ambiguity resolution was carried out at each station to assess the contribution of BDS. The across-satellite single-difference (ASSD) GPS + BDS combined ambiguity-fixed PPP model was used, in which the ASSD is applied within each system. We used a two-day data set from 48 stations. For kinematic PPP, the percentage of fixing within 10 min for GPS only (Model A) is 17.6 %, when adding IGSO and MEO of BDS (Model B), the percentage improves significantly to 42.8 %, whereas it is only 23.2 % if GEO is added (Model C) due to the low precision of GEO orbits. For static PPP, the fixing percentage is 32.9, 53.3 and 28.0 % for Model A, B and C, respectively. In order to overcome the limitation of the poor precision of GEO satellites, we also used a small network of 10 stations to analyze the contribution of GEO satellites to kinematic PPP. We took advantage of the fact that for stations of a small network the GEO satellites appear at almost the same direction, such that the GEO orbit error can be absorbed by its FCB estimates. The results show that the percentage of fixing improves from 39.5 to 57.7 % by adding GEO satellites.  相似文献   

17.
Single-epoch relative GPS positioning has many advantages, especially for monitoring dynamic targets. In this technique, errors occurring in previous epochs cannot affect the position accuracy at the current epoch, but careful processing is required, and resolving carrier phase ambiguities is essential. Statistical ambiguity resolution functions have been used to determine the best values of these ambiguities. The function inputs include as a minimum the known base station position, the approximate roving antenna “seed” position, and the dual-frequency carrier phase measurements from both receivers. We investigate different solutions to find the ambiguity function inputs that achieve the highest ambiguity resolution success rate. First, we address the rover seed position. A regionally filtered undifferenced pseudorange coordinate solution proves better than a double-differenced one. Multipath errors approximately repeat themselves every sidereal day in the case of static or quasi-static antennas; applying a sidereal filter to the pseudorange-derived positions mitigates their effects. Second, we address the relative carrier phase measurements, which for medium to long baselines are significantly affected by ionospheric propagation errors imperfectly removed during differencing. In addition to the International GNSS Service ionospheric model, we generate a local pseudorange-based ionospheric correction. Applying this correction improves the quality of the phase measurements, leading to more successful ambiguity resolution. Temporally smoothing the correction by means of a Kalman filter further improves the phase measurements. For baselines in the range 60–120 km, the mean absolute deviation of single-epoch coordinates improves to 10–20 cm, from 30–50 cm in the default case.  相似文献   

18.
Network-based ambiguity resolution (AR) between reference stations is the prerequisite to realize a precise real-time kinematic positioning service. With the help of BDS triple-frequency signals, we can efficiently deal with the ionospheric delay and tropospheric delay, and achieve rapid and reliable AR. To overcome the inaccurate ionospheric delay estimated by the geometry-free three carrier ambiguity resolution (GF TCAR) technique, which leads to failure in the original ambiguity resolution, we propose an ionospheric-free (IF) TCAR method to resolve the ambiguity between the reference stations over long baselines. Taking full advantage of the known positions of the reference stations, the easily resolved extra-wide-lane (EWL) ambiguity, and the IF phase combinations, we can reliably fix the wide-lane (WL) ambiguity. A Kalman filter is applied to estimate precise IF ambiguities and the original ambiguity is resolved with the fixed WL ambiguity. A numerical analysis with triple-frequency BDS data from three long baselines of a CORS network is provided to compare the AR performance of GF TCAR with that of IF TCAR. The results show that both methods can reliably resolve the WL ambiguity with a remarkable correctly-fixed rate of higher than 99%, and the reliably-fixed rates of the IF TCAR slightly increase from 92.19, 94.67 and 94.61–98.26, 99.54 and 97.51% for the three baselines. Herein “correctly-fixed” and “reliably-fixed” mean the difference between the float ambiguity and the true one are less than ± 0.5 and ± 0.25 cycles, respectively. On the other hand, the AR performance of the original signals with the IF TCAR method is much better than that with the GF TCAR method attaining a 100% correctly-fixed rate, while the GF TCAR method can hardly fix the original ambiguity with the largest bias being as much as 4 cycles because of the amplified systematic bias.  相似文献   

19.
准确固定非差模糊度是利用相位观测量获取高精度电离层延迟的关键。三频观测条件下常规的处理策略需依次固定超宽巷、宽巷以及窄巷模糊度,通常利用MW(melbourne-wubbena)组合解算宽巷模糊度时易受到码硬件延迟和观测噪声的影响而固定错误。利用北斗三频数据和GIM(grid ionosphenimap)产品,通过固定的超宽巷模糊度以及构造相位无几何组合解算宽巷模糊度,进而重构得到高精度电离层延迟,并且分离了码硬件延迟总量。结果表明,GIM模型辅助条件下宽巷模糊度固定成功率能达到100%,且消除了系统性偏差;电离层重构值与GIM模型改正值存在约1 m的差异,等效精度约6TECU;分离的码硬件延迟变化平稳,标准偏差不超过0.3 m。  相似文献   

20.
At present, reliable ambiguity resolution in real-time GPS precise point positioning (PPP) can only be achieved after an initial observation period of a few tens of minutes. In this study, we propose a method where the incoming triple-frequency GPS signals are exploited to enable rapid convergences to ambiguity-fixed solutions in real-time PPP. Specifically, extra-wide-lane ambiguity resolution can be first achieved almost instantaneously with the Melbourne-Wübbena combination observable on L2 and L5. Then the resultant unambiguous extra-wide-lane carrier-phase is combined with the wide-lane carrier-phase on L1 and L2 to form an ionosphere-free observable with a wavelength of about 3.4 m. Although the noise of this observable is around 100 times the raw carrier-phase noise, its wide-lane ambiguity can still be resolved very efficiently, and the resultant ambiguity-fixed observable can assist much better than pseudorange in speeding up succeeding narrow-lane ambiguity resolution. To validate this method, we use an advanced hardware simulator to generate triple-frequency signals and a high-grade receiver to collect 1-Hz data. When the carrier-phase precisions on L1, L2 and L5 are as poor as 1.5, 6.3 and 1.5 mm, respectively, wide-lane ambiguity resolution can still reach a correctness rate of over 99 % within 20 s. As a result, the correctness rate of narrow-lane ambiguity resolution achieves 99 % within 65 s, in contrast to only 64 % within 150 s in dual-frequency PPP. In addition, we also simulate a multipath-contaminated data set and introduce new ambiguities for all satellites every 120 s. We find that when multipath effects are strong, ambiguity-fixed solutions are achieved at 78 % of all epochs in triple-frequency PPP whilst almost no ambiguities are resolved in dual-frequency PPP. Therefore, we demonstrate that triple-frequency PPP has the potential to achieve ambiguity-fixed solutions within a few minutes, or even shorter if raw carrier-phase precisions are around 1 mm. In either case, we conclude that the efficiency of ambiguity resolution in triple-frequency PPP is much higher than that in dual-frequency PPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号