首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中尺度涡影响下的南海西部活性铝分布   总被引:1,自引:0,他引:1  
To understand the distribution of aluminum(Al) under the influence of mesocale eddies in the western South China Sea(SCS), sea level anomaly, geostrophic current, environmental parameters and reactive Al were investigated in the western SCS in August 2013. The highest reactive Al concentration((180±64) nmol/L) was observed in the surface waters, indicating a substantial atmospheric input. Vertically, the reactive Al decreased from the surface high concentration to the subsurface minima at the depth of chlorophyll a(Chl a) maxima and then increased again with depth at most of the stations. The average concentration of reactive Al in the upper 100 m water column was significantly lower in the cyclonic eddy((137±6) nmol/L) as compared with that in the noneddy waters((180±21) nmol/L). By contrast, the average concentrations of Chl a and silicate in the upper 100 m water column were higher in the cyclonic eddy and lower in the anticyclonic eddy. There was a significant negative correlation between the average concentrations of reactive Al and Chl a in the upper 100 m water column. The vertical distribution of reactive Al and the negative correlation between reactive Al and Chl a both suggest that the reactive Al in the upper water column was significantly influenced by biological removal processes. Our results indicate that mesoscale eddies could regulate the distribution of reactive Al by influencing the primary production and phytoplankton community structure in the western SCS.  相似文献   

2.
本文依托2008年夏季中国第三次北极科学考察航次,对西北冰洋海盆区和楚科奇海陆架营养盐及光合色素进行了测定和分析。根据海水理化性质将研究海区分为5个区,并使用CHEMTAX软件(Mackery et al.,1996)讨论了西北冰洋不同海区浮游植物群落组成结构及其与环境因子之间的关系。结果显示在楚科奇海陆架区,太平洋入流显著影响浮游植物生物量和群落结构。高营养盐Anadyr水团以及白令陆架水控制海域,表现出高Chl a且浮游植物以硅藻为主,相反,低营养盐如阿拉斯加沿岸流控制海域,Chl a生物量低且以微型,微微型浮游植物为主。在外陆架海区,海冰覆盖情况影响着水团的物理特征及营养盐浓度水平,相应地显著影响浮游植物群落结构。在海冰覆盖区域,硅藻生物量站到总Chl a生物量的75%以上;在靠近门捷列夫深海平原海区,受相对高盐的冰融水影响(MW-HS),营养盐浓度和Chl a浓度相对海冰覆盖区略高,浮游植物结构中微型、微微型藻类比重增加,硅藻比例则降至33%;南加拿大海盆无冰海区(IfB),表层水盐度最淡,营养盐浓度最低,相应地显示出低Chl a生物量,表明海冰消退,开阔大洋持续时间延长,将导致低生物量及激发更小型浮游植物的生长,并不有利于有机碳向深海的有效输出。  相似文献   

3.
Phytoplankton dynamics during the northeast monsoon was investigated in the Sulu Sea from algal pigment analysis. We visited the Sulu Sea in February 2000, a mid period of the northeast monsoon, and in November and December 2002, the beginning of the northeast monsoon. SeaWiFS images showed generally low concentrations of surface chlorophyll a (Chl a) during the southwest monsoon and higher concentrations with several peaks during the northeast monsoon. In the beginning of the northeast monsoon, subsurface chlorophyll maxima (SCM) occurred, where vertical variation in class-specific composition as estimated from pigment signatures was prominent. Prochlorococcus, cyanobacteria, prymnesiophytes and crysophytes were important groups above the SCM, and the contribution of cyanobacteria to Chl a became much lower at and below the SCM. Contributions of chlorophytes and prasinophytes to Chl a generally showed maxima near the SCM. This distribution was accompanied by vertical changes in the concentration of photoprotective pigments relative to photosynthetic accessory pigments. During the mid northeast monsoon, the upward supply of nutrients was probably enhanced at some stations due to vertical mixing, and as a consequence diatoms dominated in the upper 100 m water column of these stations, and other eukaryotic flagellates including prymnesiophytes, chrysophytes and cryptophytes were secondary major components of the community. The elevation of Chl a concentration and changes in phytoplankton community during the northeast monsoon likely influence the variation in biological production at higher trophic levels in the Sulu Sea.  相似文献   

4.
Water samples were collected in order to study the spatial variation of photosynthetic pigments and phytoplankton community composition in the Lembeh Strait(Indonesia) and the Kelantan River Estuary(Malaysia)during July and August 2016, respectively. Phytoplankton photosynthetic pigments were detected using high performance liquid chromatography combining with the CHEMTAX software to confirm the Chl a biomass and community composition. The Chl a concentration was low at surface in the Lembeh Strait, which it was 0.580–0.682 μg/L, with the average(0.620±0.039) μg/L. Nevertheless, the Chl a concentration fluctuated violently at surface in the Kelantan River Estuary, in which the biomass was 0.299–3.988 μg/L, with the average(0.922±0.992) μg/L. The biomass at bottom water was higher than at surface in the Kelantan River Estuary, in which the Chl a concentration was 0.704–2.352 μg/L, with the average(1.493±0.571) μg/L. Chl b, zeaxanthin and fucoxanthin were three most abundant pigments in the Lembeh Strait. As a consequence, phytoplankton community composition was different in the two study areas. In the Lembeh Strait, prasinophytes(26.48%±0.83%) and Synechococcus(25.73%±4.13%) occupied ~50% of the Chl a biomass, followed by diatoms(20.49%±2.34%) and haptophytes T8(15.13%±2.42%). At surface water in the Kelantan River Estuary, diatoms(58.53%±18.44%)dominated more than half of the phytoplankton biomass, followed by Synechococcus(27.27%±14.84%) and prasinophytes(7.00%±4.39%). It showed the similar status at the bottom water in the Kelantan River Estuary,where diatoms, Synechococcus and prasinophytes contributed 64.89%±15.29%, 16.23%±9.98% and 8.91%±2.62%,respectively. The different phytoplankton community composition between the two regions implied that the bottom up control affected the phytoplankton biomass in the Lembeh Strait where the oligotrophic water derived from the West Pacific Ocean. The terrigenous nutrients supplied the diatoms growing, and pico-phytoplankton was grazed through top down control in the Kelantan River Estuary.  相似文献   

5.
In October and November 2002, high and relatively high values of the chlorophyll a concentration at the sea surface (C chl) were observed in the English Channel (0.47 mg/m3), in the waters of the North Atlantic Current (0.25 mg/m3), in the tropical and subtropical anticyclonic gyres (0.07–0.42 mg/m3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11–0.23 mg/m3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of C chl (0.02–0.08 mg/m3 for the SATG and 0.07–0.14 mg/m3 for the NATR). At most of the SATG stations, the values of the surface primary production (C phs) varied from 2.5 to 5.5 mg C/m3 per day and were mainly defined by the fluctuations of C chl (r = +0.78) rather than by those of the assimilation number (r = +0.54). The low assimilation activity of phytoplankton in these waters (1.3–4.6 mg chl a per hour) pointed to a lack of nutrients. An analysis of the variability of their concentration and the composition of photosynthetic pigments showed that, in the waters north of 30° N, the growth of phytoplankton was mostly restricted by the deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), the phosphorus concentrations were the minimum. At the low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In the tropical waters and in the waters of the SATG, the primary production throughout the water column varied from 240 to 380 mg C/m2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m3) was provided by a well-developed deep chlorophyll maximum and a high transparency of the water. The light curves of photosynthesis based on in situ measurements point to the high efficiency of utilizing the penetrating solar radiation by phytoplankton on cloudy days.  相似文献   

6.
In order to detect iron (Fe) stress in micro-sized (20–200 μm) diatoms in the Oyashio region, western subarctic Pacific during spring, immunological ferredoxin/flavodoxin assays were applied to samples collected from the surface layer in May 2005. Concomitantly, the community composition of the micro-sized phytoplankton and hydrographic conditions, including dissolved Fe and macronutrient concentrations, were also examined. Chlorophyll (Chl) a concentrations were <2 mg m−3 at all sampling stations, except at a station where the Chl a level was 9.0 mg m−3 and a micro-sized diatom bloom occurred. A high abundance of ferredoxin in micro-sized diatoms was detected only at a rather near-shore station where dissolved Fe and macronutrient concentrations were higher, indicating that the micro-sized diatoms did not suffer from iron deficiency. On the other hand, flavodoxin in micro-sized diatoms was often observed at the other stations, including the bloom station, where macronutrients were replete but dissolved Fe concentration was low (0.31 nM). A significant amount of chlorophyllide a, a degradation product of Chl a, was also observed at the bloom station, suggesting a decline of the diatom bloom. The micro-sized phytoplankton species at all the stations were mainly composed of the diatoms Thalassiosira, Chaetoceros, and Fragilariopsis spp. Our study indicates that micro-sized diatoms were stressed by Fe bioavailability during the spring season in the Oyashio region  相似文献   

7.
The spatial distribution of the primary production (PP) and the chlorophyll a concentration (Chl) were investigated during two research cruises in the Drake Passage area in October–November of 2007 and 2008. The algorithm evaluating the integral PP (PPint) for the water column in this area was developed based on the data on the surface chlorophyll (Chls) and the incident solar irradiance obtained in 2004–2008 in the Atlantic Sector of the Southern Ocean. The results obtained both by the experimental and model approaches suggested that the Polar Front (PF) region of the Drake Passage was characterized by low values of both the PPint (<100 mg C/m2 per day) and Chls (0.08–0.20 mg/m3) in October–November. Low values of the Chls and relatively high phaeophytine a concentrations indicated the winter succession state of the phytoplankton community in the Antarctic Ocean and the southern Polar Frontal Zone (PFZ). The seasonal warming of the surface water layers and the developing pycnocline resulted in a phytoplankton bloom and a Chls concentration of more than 1 mg/m3 in mid-November in this area and the Subantarctic waters.  相似文献   

8.
We report on the ability for luxury Fe uptake and the potential for growth utilizing intracellular Fe pools for 4 coastal centric diatom isolates and in situ phytoplankton assemblages, mainly composed of diatoms. Iron uptake of the diatom isolates and natural phytoplankton assemblages in the Oyashio region during spring blooms were prevented by adding hydroxamate siderophore desferrioxamine B (DFB). After the addition of DFB, intracellular Fe in the diatom isolates supported 2.4–4.2 cell divisions with 1.2–2.6 Chl a doublings. The intracellular Fe was primarily used for cell generation rather than Chl a production, leading to a reduction in the Chl a cell quota in the Fe-starved cells with time. The metabolic properties of the Fe-starved cells with their cell morphologies were different among species or genera. An on-deck incubation experiment also exhibited 1.9 cell divisions and 0.81 Chl a doublings of phytoplankton after the addition of DFB, also indicating the preference of cell generation over Chl a production. A decrease in the level of cellular Chl a, a main light-harvesting pigment in Fe-starved diatoms, may become a superior survival strategy to protect the cells from high irradiance that can cause photo-oxidative damages through photosynthesis. Such relatively low-Fe with high-light conditions could often occur in surface waters of the Oyashio region from spring to summer.  相似文献   

9.
The East Sea(Sea of Japan)is a marginal,semi-closed sea in the northwestern Pacific.The Ulleung Basin area,which is located near the subpolar front of the East Sea,is known to have high primary production and good fisheries in spring season.After episodic wind-driven events during the spring of 2017,horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area.In addition,growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass.Because of strong northwestern wind,phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season.The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations.In contrast,the nutrient and chlorophyll a(Chl a)concentrations and the phytoplankton biomass were quite low in all locations.Bacillariophyceae was dominated group(>75.1%for coastal,40.0%for offshore and 43.6%for island stations).In the algal bioassays,the phytoplankton production was stimulated by N availability.The in vivo Chl a values in the+N and+NP treatments were significantly higher than the values in the control and the+P treatments.Based on the field survey,the higher nutrients in coastal waters affected the growth of diatom assemblages,however,little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments.The growth of phytoplankton depended on the initial cell density.All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers,and the low level of biomass supply from the coasts resulted in low primary production.Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.  相似文献   

10.
The species composition, cell concentration (N), and biomass (B) of the phytoplankton, as well as the chlorophyll a (Chl a) concentration, primary production (PP), and the concentrations of the dissolved inorganic micronutrients (phosphorus, silica, nitrogen as nitrite), were estimated for Kandalaksha Bay (KB), Dvina Bay (DB), and the basin (Bas) of the White Sea in August of 2004. The micronutrient concentrations were lower compared to the average long-term values for the summer period. The Chl a concentration varies from 0.9 to 2.0 mg/m3 for most of the studied areas, reaching up to 7.5 mg/m3 in the Northern Dvina River estuary. The surface water layer of the DB was the most productive area, where the PP reached up to 270–375 mg C/(m3 day). The phytoplankton biomass varied from 11 to 205 mg C/m3 with the highest values observed in the Bas and DB. Three groups of stations were defined during the analysis of the phytoplankton’s species composition similarity. The dinoflagellates Dinophysis norvegica and Ceratium fusus were particular to the phytoplankton assemblages in the KB; the diatom Ditylum brightwellii was particular to the upper and central parts of the DB. These three phytoplankton species were less abundant in the Bas.  相似文献   

11.
The spatial and temporal variability and size fractionation of chlorophyll a(Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a(S-Chl a) concentration ranged from 0.002 to 0.497 mg/m 3 and was obviously higher in the eastern Pacific than in the western and central Pacific.The vertical distribution of Chl a displayed a single peak pattern,and the maximum Chl a layer(MCL) was observed at a shallower depth in the eastern Pacific than in the western Pacific.All three size fractions of Chl a measurements in the surface water showed a similar distribution to total Chl a and were found in higher concentrations in the eastern Pacific than in the western and central Pacific.Picoplankton dominated the phytoplankton in the surveyed tropical and subtropical Pacific Ocean.Furthermore,pico-Chl a(0.2-2 μm) accounted for a larger percentage of the total Chl a in the central Pacific than it did in the western Pacific and eastern Pacific.In the western Pacific,there seemed to be a latitudinal variability in the phytoplankton community composition where small-sized phytoplankton(<2 μm) were more dominant in the tropical than in the subtropical western Pacific.The spatial and temporal variability and size fractionation of Chl a were controlled by hydrological and chemical characteristics and climate events,such as El Nin o and La Nin a.  相似文献   

12.
We found a simple function of pH that relates to sea surface temperature (SST, K) and chlorophyll-a (Chl, µg l−1) using measured surface seawater pH, SST and Chl data sets over the North Pacific: pH (total hydrogen scale at 2°C) = 0.01325 SST − 0.0253 Chl + 4.150 (R2 = 0.95, p < 0.0001, n = 483). Moreover, evaluating the seasonal variation of pH based on this algorithm, we compared the measured pH with the predicted pH at the observational time series stations in subpolar and subtropical regions. The average of ΔpH (measured - predicted, n = 52) was 0.006 ± 0.022 pH. Therefore, the combination of SST and Chl can allow us to determine the spatiotemporal distribution of pH over the North Pacific. Using the climatological data sets of SST and Chl with our pH algorithms, we have described the seasonal distributions of pH at 25°C (pH(25)) and pH in situ temperature (pH(T)) over the North Pacific surface water.  相似文献   

13.
《Oceanologica Acta》1999,22(2):205-214
Biomass and phytoplankton photosynthetic response were studied in the lower Tagus estuary weekly, and related to environmental conditions in February, March and April 1994. The Photosynthesis-Irradiance (PBI) relation was studied based on the light-saturated photosynthesis rate (PBm) and the light-limited initial slope (aB). The nutrient concentrations observed were high enough to be considered as not limiting phytoplankton growth. Tagus estuary phytoplankton seems, to a certain extent, adapted to high turbid conditions, being able to utilize the low light levels more efficiently, which was translated by high values of aB [0.10–0.20 mg C (mg Chl a)−1 h−1 (W m−2)−1]; however, light seems to limit phytoplankton production in the water column.  相似文献   

14.
15.
To investigate organic matter source and reactivity in the Zhujiang River (Pearl River)Estuary and its adjacent areas, particulate organic carbon (POC), particulate hydrolysable amino acids (PHAA), and Chl a during two cruises in July 1999 and July 2000 were measured. The highest POC and PHAA concentration was observed in the waters with maximum Chl a. The spectra distribution,relative content (dry weight in milligram per gram), PHAA-C% POC and other indicators such as the ratios of amino acids vs. amino sugars (AA/AS) and glucosamine vs. galactosamine (Glum/Gal) suggested that particulate amino acids in the water column and sediments in the Zhujiang River Estuary were mainly derived from biogenic processes rather than transported from terrestrial erosion. In inner estuary where high turbidity was often observable, organic matter was mainly contributed by re-suspension of bottom sediments with revealed zooplankton, microbial reworked characteristics, which suggest that these organic matters were relatively “old“. In the estuarine brackish region, organic matter in water column is mainly contributed by relatively fresh, easily degradable phytoplankton derived organic matter.During physical - biological processes within the eastuary, organic matter derived from phytoplankton was subjected to alteration by zooplankton grazing and bacterial reworking.  相似文献   

16.
春季我国不同纬度河口浮游动物群落变化趋势   总被引:2,自引:0,他引:2  
根据2010-2012年春季由南向北河口海域:北仑河口、九龙江口、瓯江口、长江口和灌河口的浮游动物调查资料;通过比较不同纬度河口浮游动物群落的生物多样性指数(H')、物种更替率(R)和群落相似系数(S);探讨了河口浮游动物群落特征沿着不同纬度变化的趋势。结果表明;自南向北5个河口可以划分为3个不同的浮游动物区系。北仑河口和九龙江口为南部亚热带区系;位于亚热带海域;以亚热带种为主;H'分别为1.01和2.18;两河口之间R值为65.52%;S值为51.28%;瓯江口和长江口为中部过渡区系;位于亚热带和温带过渡海域;亚热带种和暖温带种是主要出现的种类;H'分别为1.31和1.86;两河口之间R值为58.33%;S值为58.82%;灌河口单独为北部温带区系;位于温带海域;暖温带种是主要出现的种类;H'值为1.19;与其余河口物种更替率均高于80.00%;群落相似系数均低于32.00%;表明群落结构由南到北的变化非常显著。线性回归结果表明:我国不同河口之间浮游动物的物种更替率与纬度差(两河口所处纬度的差值;δN)呈正相关关系(R=0.026ΔN+0.608;p=0.002);群落相似系数与纬度差呈负相关关系(S=0.034ΔN+0.578;p=0.001)。春季;我国不同纬度河口浮游动物群落结构的变化;主要是因为影响各河口的水温和水团存在较大差别所致。  相似文献   

17.
The eruption of Mt Saint Helens on 18 May 1980 resulted in a massive increase in suspended particulate material in the Columbia River Estuary, producing a substantial increase in light attenuation. Since photosynthesis in the estuarine water column is partly controlled by the depth of light penetration in the water, photosynthesis was reduced by about 75% during the period of increased turbidity. It took about five weeks for the estuary to clear. Although primary production within the estuarine water column was greatly diminished during this period, the flux of particulate carbon through the estuary was high, and the total production we estimate to have been lost amounted to only about 2% of the total particulate carbon flux just after the eruption. That the high levels of turbidity in the estuary did not induce a severe fall in the phytoplankton population is evidence that phytoplankton biomass concentrations in the Columbia River Estuary are mostly a function of import from the Columbia River, rather than a function of in situ production.  相似文献   

18.
近20年渤海叶绿素a浓度时空变化   总被引:3,自引:0,他引:3  
浮游植物作为食物链的基础,对海洋生态系统具有重要作用。渤海作为我国最大的内海和重要渔业生物的产卵场、育幼场和索饵场,该区浮游植物研究具有重要意义。叶绿素a浓度是反映浮游植物生物量的重要指标。利用Google Earth Engine平台,对1997–2010年的宽视场海洋观测传感器(SeaWiFS)叶绿素a浓度数据和2002–2018年的水色卫星中分辨率成像光谱仪传感器(MODIS Aqua)叶绿素a浓度数据进行合并,并研究其时空变化特征。研究表明,近20年来,渤海全年叶绿素a浓度增加了14.1%,且增加显著。叶绿素a浓度在所有季节都呈现增加趋势;除11月外,其他各月都呈现稳定或增加趋势。从滦河入河口沿岸至渤海海峡的渤海中部,叶绿素a浓度增加较明显。同时也分析了海洋表面温度、风速和降水量数据。夏季渤海周边区域降水量和风速增加以及秋季海表温度的降低都有助于同季叶绿素a浓度的升高。渤海浮游植物可能受陆源营养物质输入影响较大。  相似文献   

19.
夏季闽江口和椒江口浮游动物群落结构的比较   总被引:2,自引:1,他引:1  
陈剑  张宇  徐兆礼  陈佳杰 《海洋学报》2015,37(2):111-119
根据2008年9月在闽江口水域和2010年8月在椒江口水域的调查资料,对两个河口浮游动物的种类组成、生态类群、优势种和生态适应差异进行分析比较,探讨夏季闽江口海域和椒江口海域浮游动物群落结构的区别及其组成受水团变化的影响。研究结果表明:夏季,椒江口受上升流的影响出现13个暖温带种,导致椒江口(44)水域浮游动物种类数要大于闽江口(36);闽江口海域夏季主要受到台湾暖流的影响,6个优势种全部为亚热带种,椒江口有7个优势种,包括4个亚热带种和3个暖温带种;从适温性上看,闽江口和椒江口均主要以亚热带种为主,椒江口由于上升流的原因出现较多数量的暖温带种,从适盐性上看,椒江口主要以近海种为主,闽江口主要以外海种为主,这是闽江口和椒江口浮游动物生态类群的主要差异;闽江口浮游动物群落结构主要受到台湾暖流和沿岸流的影响,而椒江口主要受到浙江近海上升流和沿岸流的影响,通过对两个河口群落结构的比较和生态适应差异的分析,表明水团是各自浮游动物群落结构的形成过程中的一个重要因素。  相似文献   

20.
通过2012年夏季第五次北极科学考察期间在楚科奇海及其邻近海域现场调查所获得的数据分析研究了海域的粒度分级叶绿素a浓度和初级生产力。结果表明,叶绿素a浓度和初级生产力的高值均出现在楚科奇海陆架区,并且远高于深海区。去程时调查海域水层平均叶绿素a浓度的变化范围为0.32~15.66mg/m3,平均(2.77±3.96)mg/m3,高值区出现在南部邻近白令海峡海域、北部阿拉斯加巴罗近岸和冰缘区;初级生产力的范围为50.11~943.28mg/(m2d),高值出现在冰缘水华区。返程时水层平均叶绿素a浓度的变化范围为0.07~1.52mg/m3,平均(0.41±0.40)mg/m3,高值仍出现在陆架区,但比去程时低了一个数量级;初级生产力的分布范围为12.31~41.35mg/(m2d),高值出现在陆架区。浮游植物粒度分级测定结果表明,在生物量较低的深海区,叶绿素a浓度和初级生产力的粒级结构以微微型浮游生物(Pico级份)占优势(其贡献率分别为46.1%和56.9%),小型(Net级份)和微型(Nano级份)对总叶绿素a浓度的贡献差异极小,分别为26.6%和27.3%,对总初级生产力的贡献分别为23.8%和19.3%;而在生物量较高的水深小于200m的陆架区,Net级份叶绿素a浓度所占百分比最高,Pico级份次之,Nano级份最低,分别为59.8%、27.9%和12.3%,初级生产力的粒级结构中叶绿素a浓度所占百分比由高到低同样是Net、Pico和Nano,所占百分比分别为60.6%,32.2%和7.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号