首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
考虑到当前已有的ZTD、ZWD垂直剖面模型时空分辨率低等不足,以NASA提供的2014~2016年气象再分析资料MERRA-2为基础,分析中国区域ZTD、ZWD高程缩放因子的时空分布特性。结果表明,ZTD、ZWD高程缩放因子均具有明显的年周期和半年周期变化,与经度、纬度相关性显著,且两者时空分布特性具有明显差异。  相似文献   

2.
通过分析由ERA-Interim气象再分析资料积分方法得到的天顶对流层总延迟随高程变化的规律,提出一种基于垂直剖面函数的天顶对流层延迟(ZTD)插值算法。该算法以ZTD的垂直分布规律为基础,通过垂直剖面函数实现ZTD在高程方向上的精准投影延拓,可以避免因高差较大造成的空间内插结构畸形。采用IGS站提供的高精度对流层产品进行实验验证表明,该算法相对于传统算法能够有效提高ZTD改正值的精度,尤其在高差超过1 km的情况下,相对于反距离加权法精度提升了96%,相对于空间回归法精度提升了79%。  相似文献   

3.
基于安徽省23个CORS站数据解算天顶对流层延迟(ZTD),评估GPT3+Hopfield和GPT3+Saastamoinen两种对流层组合模型的适用性,并利用探空数据分析GPT3模型估计大气加权平均温度(Tm)和反演大气可降水量(PWV)的精度。结果表明:1)GPT3+Saastamoinen组合模型的ZTD精度优于GPT3+Hopfield组合模型,GPT3模型的ZTD精度具有显著的时空分布特征,皖南精度低于皖北,且春、冬季精度优于夏、秋季;2)在安徽地区,GPT3模型2种格网分辨率的Tm精度基本相当,平均偏差在-2.0 K左右,RMS值在4.5 K左右;3)在安徽地区,基于GPT3模型气象参数反演的PWV(GPT3-PWV)与探空站的PWV有较高的一致性,且同样具有时空变化特征,由皖南向皖北逐渐降低,夏季最大、冬季最小。  相似文献   

4.
利用无线电探空数据,对格网对流层模型GPT2w、IGGtrop及GTPs在中国区域的适用性进行分析。结果显示,GPT2w和IGGtrop在地表附近精度相当,RMS为4.0~4.2 cm,西部地区精度优于东部,东南沿海精度最差,夏季精度明显低于冬季,在中西部地区分辨率低的模型可能会产生异常偏差;GPT2w模型明显存在系统性偏差,中西部为正,东南部为负;3 km高度以上,IGGtrop模型精度明显优于GPT2w模型,且随高度增加精度保持稳定。在飞行器定位导航中,建议采用IGGtrop模型修正ZTD误差。GTPs模型时间分辨率高,精度明显优于传统的经验模型,尤其在东南沿海ZTD变化剧烈的区域,但由于其依赖于外部数据源,部分区域无法使用。  相似文献   

5.
利用MATLAB实现UNB3m、GPT2w+Hopfield、GPT2w+Saastamoinen、GPT3+Hopfield、GPT3+Saastamoinen等5种模型,分析它们在陕西地区的适用性。结果表明,5种模型结果普遍偏小。GPT2w+Saastamoinen和GPT3+Saastamoinen模型整体精度相当,且优于其他3种模型,bias为1.41 cm,RMS分别为4.68 cm和4.67 cm,且随着高程增加精度越来越高。5种策略精度均随季节变化而变化,其中UNB3m变化最为明显,夏冬2季bias差达到7.92 cm,RMS差达到7.67 cm。更高精度计算时,秋季应使用GPT3,而春夏2季时使用GPT2w效果更好。选用同样的气象参数模型时,Saastamoinen模型比Hopfield模型更适用于陕西地区,并且陕北地区精度最好。对比最新的全球气压温度模型GPT3与GPT2w发现,2种模型算得的地面气压P、地面温度T、地面水汽压e、大气加权平均温度Tm等4种气象参数均相差细微,所以在陕西地区利用GPT2w或GPT3分别算得的对流层总延迟ZTD和对流层干延迟ZHD相差很小,通过对流层湿延迟ZWD算得的PWV也几乎相当。  相似文献   

6.
针对GPT2w模型误差累积所导致的天顶对流层延迟(zenith tropospheric delay, ZTD)和大气可降水量(precipitable water vapor, PWV)精度不高的问题,利用2017年长三角地区7个探空站和2个GNSS站的实测数据检验GPT2w模型获取的气压、温度、水汽压、加权平均温度(Tm)和ZTD等参数的精度,并融合GNSS解算得到的ZTD(GNSS-ZTD)与GPT2w模型获取的气象参数,提高PWV反演精度。结果表明:1)近地面处的气压、温度和水汽压的bias分布在-3~4 mbar、-7~7 K和-9~2 mbar之间,精度较高;2)GPT2w模型获取的Tm在长三角地区适用性较好,年均bias和RMS分别为-1.21 K和6.89 K;3)基于GPT2w模型解算的ZTD的bias和RMS均值分别为1.4 cm和9.4 cm,精度明显低于基于实测气象数据获得的GNSS-ZTD;4)参数融合法计算的PWV与GNSS-PWV精度相当,该方法可用于无实测气象参数时实时获取PWV。  相似文献   

7.
利用2010~2012年的IGS天顶对流层延迟(ZTD)序列、ERA5格网数据积分ZTD序列,在中国4个VLBI站点上对目前常用的经验模型进行优化,分别建立Local_ERA和Local_ZTD模型。基于2013~2014年IGS并址站点ZTD数据,将改进后的2种模型与全球GPT2w模型、SHAO-Gm模型进行对比。结果表明,改进后的Local_ERA、Local_ZTD模型精度相近,相对于GPT2w、SHAO-Gm模型平均精度在4个VLBI站点上都有提高,尤其在水汽季节性变化较强的北京站改进效果明显;其中Local_ERA平均精度略高于Local_ZTD,比GPT2w模型精度提高7.90%,比SHAO-Gm模型精度提高21.26%。  相似文献   

8.
使用亚洲区域18个IGS测站和中国区域内16个探空站2016~2018年的数据,研究GPT3模型反演天顶对流层延迟(ZTD)和大气可降水量(PWV)的精度,并与其他GPT系列模型进行对比。结果表明,GPT3-1模型估计的ZTD的bias均值和最大值均最小,分别为1.34 mm和14.06 mm;GPT3模型整体精度略优于GPT2w模型,优于GPT2模型。探空站处GPT3模型反演的PWV的bias和RMSE均表现出较强的季节性特征;由GPT3模型反演的PWV的月均值可知,GPT3-1模型比GPT3-5模型具有更高的精度和稳定性。  相似文献   

9.
为简化GNSS大气可降水量(PWV)的计算过程,提高GNSS-PWV实时解算效率,利用2017~2018年长三角地区7个GNSS测站数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(T)、地面气压(P)之间的线性关系,通过线性拟合建立PWV直接转换区域模型。实验结果表明:1)PWV与ZTD、P和T之间具有良好的相关性,相关系数分别为0.99、-0.74和0.73;2)基于ZTD的全年单因子PWV模型的RMS为3.07 mm,基于ZTD和T的全年双因子PWV模型RMS为2.35 mm,基于ZTD和P的全年双因子PWV模型RMS为1.18 mm,基于ZTD、T和P的全年多因子PWV模型RMS为0.47 mm,基于ZTD、T和P的分季节多因子PWV模型的平均RMS为0.28 mm,后者预测精度略优。  相似文献   

10.
利用中国区域2015~2017年探空数据,建立一种顾及地表温度、地表水汽压、高程和纬度的中国区域大气加权平均温度Tm模型(BET模型)。以2018年探空站Tm数据为参考值,分析BET模型精度,并与Bevis模型和GPT3模型进行对比。结果表明,BET模型年均RMSE与bias分别为3.15 K和0.04 K,相比于Bevis模型、1°×1°分辨率的GPT3模型和5°×5°分辨率的GPT3模型,年均RMSE分别降低29.2%、32.8%和39.1%,年均bias分别降低96.4%、96.7%和97.4%,且该模型在中国区域不同高程和纬度上的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

11.
利用ECMWF再分析地表资料,结合GPT2w模型提供的水汽递减率和温度递减率计算中国区域对流层延迟值的精度。首先,以中国地区75个探空站2015年地表实测气象参数为参考值,利用ECMWF地表资料得到的气象参数(P,T,e)的精度分别为1.76 hPa、1.96 K、1.98 hPa。然后,以相同测站2010~2015年探空站分层数据算得的ZTD为参考值,对ECMWF地表资料计算的ZTD的精度进行分析,并与利用探空仪地面观测数据为输入参数计算的ZTD的精度进行对比。结果显示,利用ECMWF地表资料计算的ZTD的平均bias为0.07 cm,平均RMS为3.72 cm,在低纬度地区优于利用探空仪地面观测数据为输入参数计算的ZTD的结果。以陆态网237个GNSS测站2015年的ZTD作为参考值,比对利用ECMWF地表资料计算的ZTD的精度,结果为3.41 cm。由此可知,ECMWF地面资料计算的ZTD的精度能满足普通用户对流层延迟的计算需求,可用于缺少气象参数的测站进行对流层延迟值的计算及其他相关应用。  相似文献   

12.
基于中国沿海GNSS观测网20个测站31 d的数据,从数据处理模式、系统组合和卫星截止高度角等方面研究沿海地区GPS/GLONASS数据提取天顶对流层延迟的方法,以CODE提供的对流层产品和探空数据资料作为标准值来评价对流层延迟的精度。结果表明,截止高度角为10°时,采用双差网解GPS/GLONASS组合系统提取的天顶对流层延迟精度略优于双差网解GPS单系统和精密单点定位GPS/GLONASS组合系统,各方法提取结果不存在明显的系统偏差;截止高度角设置对天顶对流层精度影响较大,截止高度角为30°时,采用双差网解GPS单系统提取的结果精度最优,但其精度较低截止高度角时明显降低。  相似文献   

13.
针对区域相对高程对Tm模型影响研究领域的空缺,基于已有的对流层顶经验模型,讨论区域相对高程对Tm模型的影响,并在此基础上构建中国区域的h0Tm回归模型,同时建立青藏高原地区的区域模型h0Tm-Qz。模型检验结果表明:1)以ERA5格网数据为参考值,h0Tm模型的RMS为2.43 K,相比于Bevis公式和GPT2w-1模型,精度分别提高了1.15 K(32%)和0.63 K(21%);2)以探空数据为参考值,h0Tm模型的RMS为2.48 K,相比于Bevis公式和GPT2w-1模型精度分别提高了1.19 K(32%)和2.06 K(45%),h0Tm模型在中国区域表现出较低的误差和良好的稳定性,尤其是在中国西部地区表现出更为显著的优势;3)顾及区域相对高程的青藏高原区域模型h0Tm-Qz相较于该地区的单因子(Ts)区域模型TsTm-Qz和Bevis公式,精度分别提高了0.54 K(19%)和2.50 K(51%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号