首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
采用中国区域2017~2018年与GNSS站并址的49个探空站资料对GPT3模型估算的气象参数的精度进行评估,再利用49个GNSS站结合GPT3模型估算的气象参数反演日均大气可降水量PWV,并采用与GNSS站并址的探空站数据对其精度进行评定。实验得出:1)在中国地区,1°分辨率的GPT3模型的精度和稳定性优于5°分辨率,其气压、气温和大气加权平均温度Tm的偏差均值分别为0.73 hPa、1.34 K和-1.67 K,均方根误差均值分别为4.21 hPa、3.75 K和4.15 K;2)利用GPT3模型提供的气温结合Bevis经验公式反演的PWV与GPT3模型提供的Tm反演的PWV精度相当,且2种方法反演的PWV和探空资料实测地表温度反演的PWV呈现很好的一致性,在我国青藏高原和西北地区反演PWV的精度优于我国南方和北方地区。  相似文献   

2.
针对GPT2w模型误差累积所导致的天顶对流层延迟(zenith tropospheric delay, ZTD)和大气可降水量(precipitable water vapor, PWV)精度不高的问题,利用2017年长三角地区7个探空站和2个GNSS站的实测数据检验GPT2w模型获取的气压、温度、水汽压、加权平均温度(Tm)和ZTD等参数的精度,并融合GNSS解算得到的ZTD(GNSS-ZTD)与GPT2w模型获取的气象参数,提高PWV反演精度。结果表明:1)近地面处的气压、温度和水汽压的bias分布在-3~4 mbar、-7~7 K和-9~2 mbar之间,精度较高;2)GPT2w模型获取的Tm在长三角地区适用性较好,年均bias和RMS分别为-1.21 K和6.89 K;3)基于GPT2w模型解算的ZTD的bias和RMS均值分别为1.4 cm和9.4 cm,精度明显低于基于实测气象数据获得的GNSS-ZTD;4)参数融合法计算的PWV与GNSS-PWV精度相当,该方法可用于无实测气象参数时实时获取PWV。  相似文献   

3.
以中国区域89个探空站2017年资料为参考值,对ERA5和MERRA-2再分析资料积分计算的Tm的精度进行评估,并分析2种资料计算的Tm的bias和RMSE的时空变化特性。结果表明:1)以探空站资料为参考值,ERA5和MERRA-2再分析资料计算的Tm的年均bias分别为0.41 K和0.10 K,年均RMSE分别为1.26 K和1.34 K。2)2种资料计算的Tm的bias和RMSE具有相似的时空变化特性,时间上总体表现为夏季精度高、冬季精度稍低,但ERA5再分析资料计算的Tm的bias在全年均表现为正值,而MERRA-2再分析资料计算的Tm的bias在夏季表现为负值,其余时间表现为正值;在空间上,2种资料计算的Tm的bias和RMSE在高程上无明显变化特性,但在纬度上RMSE均表现出随纬度增加而逐渐变大的趋势,总体保持在2.5 K以内。  相似文献   

4.
针对GPT3模型各气象参数存在明显周期性误差的问题,以2015~2019年长三角地区7个探空站资料作为参考,分析GPT3模型残差的季节性周期变化,并利用Emardson-H模型构建一种新的GPT3改进模型。实验结果表明:1)与探空资料相比,GPT3模型气压、温度、水汽压和加权平均温度(T_(m))的均方根(RMS)均值分别为5.09 hPa、3.90 K、4.01 hPa和4.54 K;2)基于Emardson-H的GPT3改进模型气压、温度、水汽压和T_(m)的RMS均值分别为4.64 hPa、3.53 K、3.73 hPa和3.27 K,比GPT3模型分别提升0.45 hPa、0.37 K、0.28 hPa和1.27 K。综上分析,基于Emardson-H的GPT3改进模型精度相比GPT3模型有所改进。  相似文献   

5.
利用长三角地区多个探空站气象资料、GNSS观测数据和GPT3模型,以探空资料的大气可降水量(PWV)为参考值,评估GPT3模型、两种地面气象资料法和GNSS等4种方法计算的PWV精度、可靠性和时效性.结果表明,GPT3模型可实时获取PWV,但精度较低;GNSS-PWV精度最高,但需要实测气象参数,会限制其应用范围;两种...  相似文献   

6.
利用ECMWF再分析地表资料,结合GPT2w模型提供的水汽递减率和温度递减率计算中国区域对流层延迟值的精度。首先,以中国地区75个探空站2015年地表实测气象参数为参考值,利用ECMWF地表资料得到的气象参数(P,T,e)的精度分别为1.76 hPa、1.96 K、1.98 hPa。然后,以相同测站2010~2015年探空站分层数据算得的ZTD为参考值,对ECMWF地表资料计算的ZTD的精度进行分析,并与利用探空仪地面观测数据为输入参数计算的ZTD的精度进行对比。结果显示,利用ECMWF地表资料计算的ZTD的平均bias为0.07 cm,平均RMS为3.72 cm,在低纬度地区优于利用探空仪地面观测数据为输入参数计算的ZTD的结果。以陆态网237个GNSS测站2015年的ZTD作为参考值,比对利用ECMWF地表资料计算的ZTD的精度,结果为3.41 cm。由此可知,ECMWF地面资料计算的ZTD的精度能满足普通用户对流层延迟的计算需求,可用于缺少气象参数的测站进行对流层延迟值的计算及其他相关应用。  相似文献   

7.
利用山东区域及邻近探空站,分析GPT2模型估算气象参数(气温和气压)的精度,并将GPT2模型应用于SDCORS反演可降水汽中,分析评估其精度。研究表明,GPT2模型估算气温和气压的偏差均值分别为-1.61 ℃和0.53 Pa,标准差均值分别为2.84 ℃和4.42 Pa,均方根误差均值分别为3.27 ℃和4.49 Pa;GPT2模型估算的气象参数解算的SDCORS/PWV的偏差均值为1.22 mm,标准差均值为3.05 mm,均方根误差均值为3.46 mm,较GPT模型精度高,可靠性强。对于未配备气象传感器的CORS站,基于GPT2模型估算气温和气压,有助于利用区域CORS反演可降水汽,有效实现对大气可降水量的监测与预报。  相似文献   

8.
利用精密单点定位(PPP)技术处理贵州地基GNSS观测数据,获得高精度天顶对流层延迟(ZTD),进而开展水汽反演获得大气可降水量(PWV)产品。基于斜路径可降水量(SWV),使用自适应联合代数重构算法进行三维水汽层析,空间分辨率优于30 km×30 km,时间分辨率为5 min。以无线电探空数据为参考评估ZTD和PWV精度,其RMS分别为3.55 mm和1.03 mm。以ERA5再分析资料为参考评估三维层析精度,无暴雨发生时,三维层析相对误差不超过10%,偏差最大值为1.03 g/m3。以无线电探空数据为参考评估三维层析精度,层析结果与无线电探空数据的相关系数在0.97以上,具有较好的一致性。贵阳站和威宁站的平均RMS分别优于0.5 g/m3和1.2 g/m3。  相似文献   

9.
使用亚洲区域18个IGS测站和中国区域内16个探空站2016~2018年的数据,研究GPT3模型反演天顶对流层延迟(ZTD)和大气可降水量(PWV)的精度,并与其他GPT系列模型进行对比。结果表明,GPT3-1模型估计的ZTD的bias均值和最大值均最小,分别为1.34 mm和14.06 mm;GPT3模型整体精度略优于GPT2w模型,优于GPT2模型。探空站处GPT3模型反演的PWV的bias和RMSE均表现出较强的季节性特征;由GPT3模型反演的PWV的月均值可知,GPT3-1模型比GPT3-5模型具有更高的精度和稳定性。  相似文献   

10.
以中国西南地区2015~2017年探空数据为实验数据,使用多层感知器(MLP)神经网络回归方法建立西南地区的加权平均温度(Tm)模型。将气象参数(地表温度、水汽压)和非气象参数(高程、纬度和年积日)作为模型输入因子,由数值积分法计算得到的Tm作为学习目标,通过神经网络模型进行迭代训练从而得到中国西南地区的Tm。以2018年探空站Tm数据为参考值,对MLP模型精度进行验证,并与Bevis模型和GPT3模型进行对比分析。结果表明,MLP模型的年均RMSE和年均bias分别为1.99 K和0.15 K,比Bevis模型、GPT3模型年均RMSE分别降低1.36 K(40.6%)和1.51 K(43.1%),年均bias分别下降0.70 K(82.4%)和1.04 K(87.4%),且该模型在中国西南区域不同高程、纬度和季节的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

11.
COSMIC-2可提供连续大气数据源用于改进天气预报,有助于对极端天气进行监测预警。将中国大陆地区按照气候类型划分成5个区域,依托CMONOC站点PWV序列,开展COSMIC-2 PWV在中国大陆地区的精度分析。从站间距离和高程2个角度进行COSMIC-2掩星点与GNSS站点PWV匹配方案设计,分别针对中国大陆地区、不同气候类型和部分代表站点开展COSMIC-2精度评定。研究表明,高原山地、温带大陆、温带季风、亚热带季风和热带季风气候类型的RMSE分别为1.40 mm、1.49 mm、2.68 mm、3.11 mm和3.16 mm;内陆地区精度优于沿海地区。  相似文献   

12.
提出一种顾及水汽衰减因子的PWV估算模型,通过输入地面大气水汽压和水汽衰减因子获得PWV,并选取2018年中国地区85个探空测站和7个IGS测站1 a的观测数据用于验证新模型的精度。结果表明,在已知当日水汽衰减因子的情况下,模型估算的PWV精度约为2 mm;也可通过GPT2w格网内插得到任意位置的水汽衰减因子,其结果精度与传统的一次多项式模型相当,但新模型的作用范围更广、适用性更强。  相似文献   

13.
ERA5地表下行太阳短波辐射数据是欧洲中期天气预报中心(ECMWF)最新的,具有高时空分辨率的再分析产品,该短波辐射产品可作为陆面模式大气强迫数据之一,并在区域气候评估、农业以及太阳能资源等方面具有重要应用。本文利用中国区域2011—2018年经过质控的91个国家级地面辐射站点观测数据,对其在中国大陆地区的适用性进行多时空尺度的评估,并与ERA-Interim、CFSR、MERRA2共3套全球大气再分析产品和1套CERES卫星反演SYN1deg的产品进行了比较。结果表明:① 在月均值尺度上,与其他再分析产品比较,ERA5产品与站点数据的Corr最高(0.939),RMSE最小(28.309 W/m2),Bias(15.4 W/m2)略大于ERA-Interim产品(13.2 W/m2);CERES卫星反演产品与站点数据的Corr为0.955,RMSE为20.042 W/m2,Bias为5.3 W/m2;② 5套产品的辐射值均高于地面观测数据,存在高估现象,总体上,ERA5产品在中国大陆地区的整体精度高于其他再分析产品,但与CERES卫星反演产品还存在一定差距,日均值比较结论亦具有相似规律。③ 分区评估结果表明在再分析产品中,ERA5产品在4个区域与观测数据都有更好的一致性,但5套产品均在南部区域表现不佳。并且与东北和北部区域相比,ERA5产品和CERES卫星反演产品在西部区域和观测数据相比的RMSE和Bias也相对偏大。  相似文献   

14.
高时空分辨率的气温栅格数据是多种地学模型和气候模型的重要输入。山区地形复杂,气温空间异质性强,如何获取高时空分辨率的山区地表气温数据一直是研究热点与难点。本文选择地形复杂的河北省张家口市作为试验区,基于局部薄盘样条函数对ERA5再分析日均近地表气温(2 m高度)进行空间插值,并利用随机森林算法,结合少量气象站观测气温数据、地形地表参数数据构建日均气温订正模型和气温逐时化模型,实现空间分辨率由0.1 °(约11 km)到30 m的逐时气温降尺度,最后将该模型拓展应用于其他时间与区域,检验本文发展的降尺度方法在没有站点观测数据条件下的时空移植性。结果显示,本文降尺度方法得到的高时空分辨率山区气温数据精度较高,1月均方根误差(RMSE)平均值为2.4 ℃,明显优于气象站点插值结果,且气温相对高低的空间分布更为合理、纹理更加丰富;将该方法应用到其他时间与区域的RMSE平均值分别为2.9 ℃与2.5 ℃,均小于再分析资料直接插值所产生的误差。研究结果总体表明,在气象站点较少甚至没有时,可利用本文方法通过ERA5再分析气温准确获取复杂地形条件下的山区高时空分辨率气温数据。  相似文献   

15.
为简化GNSS大气可降水量(PWV)的计算过程,提高GNSS-PWV实时解算效率,利用2017~2018年长三角地区7个GNSS测站数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(T)、地面气压(P)之间的线性关系,通过线性拟合建立PWV直接转换区域模型。实验结果表明:1)PWV与ZTD、P和T之间具有良好的相关性,相关系数分别为0.99、-0.74和0.73;2)基于ZTD的全年单因子PWV模型的RMS为3.07 mm,基于ZTD和T的全年双因子PWV模型RMS为2.35 mm,基于ZTD和P的全年双因子PWV模型RMS为1.18 mm,基于ZTD、T和P的全年多因子PWV模型RMS为0.47 mm,基于ZTD、T和P的分季节多因子PWV模型的平均RMS为0.28 mm,后者预测精度略优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号