首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

2.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

3.
本文基于实测温盐数据等资料,利用水团的浓度混合分析等方法,揭示了热带中东太平洋海域10°N断面的水团构成自上而下分别为东部赤道–热带水团、北太平洋中央水团、加利福尼亚流系水团、南太平洋中央水团、太平洋亚北极水团和太平洋深层水团。分析发现,受热带辐合带影响,9°~10°N海域常年持续的正风应力旋度诱发上升流出现,北太平洋中央水团、加利福尼亚流系水团、南太平洋中央水团和太平洋亚北极水团4个通风潜沉水团经向运动至该纬度带时被抽吸至次表层和中层,并散布在不同深度。以往研究仅指出上述4个水团在海表通风形成后将潜沉并向赤道方向运动,本研究进一步阐明了4个水团潜沉后向热带海域运动的动力机制及其在热带中东太平洋10°N断面的散布深度。研究成果揭示了热带中东太平洋水团与北太平洋副热带、亚极地和南太平洋副热带海区中上层水团间的循环过程,对认识北太平洋高–中–低纬度间物质和能量的交换和再分配具有重要科学价值。  相似文献   

4.
本文利用World Ocean Atlas 2013(WOA2013)气候态的温盐资料和the Simple Ocean Data Assimilation (SODA v3.3.1)流场数据,分析印尼贯穿流东部源区马鲁古海和哈马黑拉海的水团垂向分布特征及其来源,特别是次表层、中层及深层水的来源和路径。结果表明,气候态下,马鲁古海次表层的高温高盐水来自于北太平洋,与北太平洋热带水性质接近,哈马黑拉海次表层主要是来自南太平洋热带水;中层水以低温低盐为特征,马鲁古海的中层水来自南太平洋,受南极中层水控制,哈马黑拉海的中层水可能是从马鲁古海而来的南太平洋水;对于次表层和中层之间的过渡层,马鲁古海与哈马黑拉海的水源为南、北太平洋的混合水,且两个海域之间也存在着水团交换;在深层,马鲁古海的水源更倾向于班达海北部及塞兰海,而与太平洋水无关,哈马黑拉海由于地形阻挡也难以与太平洋直接发生水团交换。  相似文献   

5.
深海富REY泥中稀土元素赋存载体及其富集机制研究进展   总被引:1,自引:1,他引:0  
综合前人发表的关于太平洋、大西洋以及印度洋等深海沉积物中稀土元素含量的数据,本文较为系统地阐述了全球深海富REY泥(REY-rich mud)的分布,分析了不同沉积环境下富REY泥中稀土元素的赋存载体及其控制因素,并进一步探讨了赋存载体中稀土元素的富集机制。研究发现深海富REY泥主要分布在太平洋和印度洋的深海盆地中,其中西北太平洋南鸟岛附近海域沉积物中稀土元素最为富集,是较为有利的稀土资源勘探潜力区。邻近热液区,深海沉积物中稀土元素含量受热液活动影响较大,稀土元素的主要赋存相是Fe-Mn水合(氢)氧化物,可能是热液流体扩散过程中,颗粒物中的Fe-Mn水合(氢)氧化物等吸附(scavenge)海水中的稀土元素所致。而在远离热液区的正常深海富REY泥中,高磷含量以及低沉积速率是导致其稀土含量相对较高的主要因素,赋存载体主要是生物成因磷灰石(鱼牙骨碎屑)。在磷灰石早期成岩阶段,海水和孔隙水中的REY进入磷灰石,在羟基磷灰石晶格中REE~(3+)与磷灰石中的Ca~(2+)发生类质同象替代:REE~(3+)+Na~+?2Ca~(2+)和REE~(3+)+Si~(4+)?Ca~(2+)+P~(5+),使其不断地富集稀土元素,但这还需要进一步研究。  相似文献   

6.
王正方 《海洋科学》1987,11(5):38-40
本文测定了南极表层海水中的Ni浓度。Ni浓度的变化范围为0.05—0.19μg/L,平均值为0.13μg/L。文中综论了世界大洋和近岸海域表层水中Ni的基线浓度分布,指出近岸表层水Ni的浓度高于大洋,而大洋表层水中的Ni高于印度洋和太平洋,南极表层海水中Ni的浓度最底。Ni是陆源物质,并在表层水中大量消耗。  相似文献   

7.
世界大洋表层水中的210Pb   总被引:2,自引:0,他引:2  
本工作获得了西太平洋,东印度洋和南大西洋15个站位表层水中的溶解态210Pb和颗粒态210Pb的浓度.溶解态210Pb的浓度范围为西太平洋0.71~3.80Bq/m3;东印度洋0.42~2.15Bq/m3;南大西洋0.97~1.78Bq/m3.210Pb最大值3.80Bq/m3是在27°18′N,125°40′E(北太平洋)测得的,而最小值0.42Bq/m3是在远离澳大利亚西岸的25°18′S,111°38′E(东印度洋)测得的.在26°56′S,166°07′E(南太平洋)观测到颗粒态210Pb浓度的最大值0.35Bq/m3,而在东南印度洋颗粒态210Pb的浓度都小于0.03Bq/m3.表层水中溶解态210Pb含量一般呈现出地理性变化,其随纬度的变化与文献报道的结果很相符.  相似文献   

8.
深海沉积物中稀土(REY,包括Y)是继多金属结核、富钴结壳和热液硫化物之后又一有潜力的深海矿产资源。对中太平洋46个富稀土的沉积物样品(∑REY=(730~1 596)×10-6)和53个相对贫稀土的沉积物样品(∑REY=(324~487)×10-6)进行主微量和稀土地球化学分析,利用聚类分析和因子分析法,对元素组合特征进行了分析,划分元素组合和4个主因子。综合特征表明,2类沉积物REY的富集均与磷酸盐有关,REY含量高低取决于磷酸盐含量,但沉积物的形成具有多源多期的特点,富REY沉积物中铝硅酸岩(黏土矿物和沸石)对沉积物中磷酸盐富集REY的过程具有重要的促进作用,而在贫REY沉积物中铝硅酸岩对REY的富集意义不明显。  相似文献   

9.
本文综合分析四个断面16个标准层的因子点聚,表明在整个海区有九个水团,即:黑潮表层水、黑潮次表层水、黑潮中层水、黑潮深层水、大陆沿岸水、台湾暖流水、黄海水、对马暖流水和东海混合水,前6个水团是该海区的主要水团。本文还详细讨论了每个水团的分布特征。  相似文献   

10.
西太平洋北赤道逆流槽上部水域1 000m 以浅分布4个水团:北太平洋热带表层水、北太平洋次表层水、北太平洋中层水和南极太平洋中层水,它们的交界分别位于75、200和310m 深左右。在1986~1987年的El Ni(?)o 事件前期,海区温跃层明显上移;上均匀层盐度降低约0.35,近海表面温度略有增加。在1988~1989年的反厄尔尼诺事件盛期,海区温跃层明显下移;上均匀层盐度降低约0.35,近海表面温度则略有升高。  相似文献   

11.
The distribution of aluminum (Al) in seawater has been investigated in the continental slope and the Okinawa Trough areas of the East China Sea, which is one of the marginal seas in the western North Pacific Ocean. Aluminum concentration in waters over the slope and the Trough ranged from 5.6 to 25 nmol/kg in the surface layer (0–100 m), and had a minima of 1.1 nmol/kg between 400 and 500 m depth and ranged from 1.3 to 9.7 nmol/kg in the deep or bottom waters. Aluminum values were higher than in the surface waters of the central North Pacific, while minimum values were similar to levels in the intermediate or deep waters of the central North Pacific, except for the bottom water over the slope. This suggests that the high Al concentration in the surface reflects the large atmospheric input of Asian dust around the western side of the North Pacific region. On the continental slope, Al concentrations in the upper 500 m depth decreased slopeward. This horizontal gradient of Al can be explained from the combination of dilution by upwelling of Al-poor water originated from the North Pacific Intermediate Water (NPIW) which intrudes into the mid-depth of the Okinawa Trough and the scavenging of Al by biogenic particles in the continental slope zone.  相似文献   

12.
Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific Ocean reveal the biogeochemical controls on CDOM and indicate predictive potential for open-ocean CDOM in diagnosing particulate organic matter (POM) remineralization rates within ocean basins. Relationships between CDOM and concentrations of dissolved oxygen, nutrients and inorganic carbon in the subthermocline waters of the Pacific reflect the relative influences of water mass ventilation and water-column oxidative remineralization. Apparent in situ oxygen utilization (AOU) accounts for 86% and 61% of variance in CDOM abundance, respectively, in Antarctic Intermediate Water and North Pacific Intermediate Water. In the deep waters of the Pacific below the zone of remineralization, AOU explains 26% of CDOM variability. The AOU–CDOM relationship results from competing biogeochemical and advective processes within the ocean interior. Dissolved organic carbon (DOC) is not statistically linked to the CDOM or AOU distributions, indicating that the majority of CDOM production occurs during the remineralization of sinking POM and thus potentially provides key information about carbon export. Once formed in the ocean interior, CDOM is relatively stable until it reaches the surface ocean where it is destroyed by solar bleaching. Susceptibility to bleaching confers an additional tracer-like quality for CDOM in water masses with active convection, such as mode waters that appear as subsurface CDOM minima. In the surface ocean, atypically low CDOM abundance highlights a region of unusually extreme oligotrophy: the subtropical South Pacific gyre. For these hyper-oligotrophic waters, the present CDOM observations are consistent with analysis of in situ radiometric observations of light attenuation and reflectance, demonstrating the accuracy of the CDOM spectrophotometric observations. Overall, we illustrate how CDOM abundance in the ocean interior can potentially diagnose rates of thermohaline overturning as they affect regional biogeochemistry and export. We further show how relative surface ocean CDOM abundances are driven in large part by processes occurring in the deep layers of the ocean. This is particularly significant for the interpretation of the global surface distribution of CDOM using satellite remote sensing.  相似文献   

13.
According to the summarized data on the distribution of the Cenozoic siliceous sediments inl the Japanese and Okhotsk seas, the silica accumulation in them initiated in the early Miocene and Oligocene, respectively. This process was preceded by relatively sharp cooling in the Eocene, which stimulated the development of the diatom flora. The global circulation system in the World Ocean favored the upwelling of deep waters in the North Pacific. These nutrient-enriched oceanic waters invaded the marginal seas to determine their high bioproducticvity and intense silica accumulation. In the terminal Pliocene, the share of biogenic silica in the sediments became sharply reduced. This phenomenon corresponds to the onset of the continental glaciations in the Northern Hemisphere 2.6 Ma ago. The water column became stratified to form a distinct halocline, which reduced the bioproductivity. In the present-day Sea of Japan, the water exchange with the Pacific is limited by the shallow and narrow straits between these basins. The Sea of Okhotsk is connected with the ocean by deep straits so that deep nutrient-rich oceanic waters intrude into this basin providing its high bioproductivity. Dissimilar to the Neogene sediments, the Quaternary sequences demonstrate periodicity in the silica accumulation: it was strongly suppressed due to the ice cover during the glaciations and recommenced during the warm interglacial periods.  相似文献   

14.
Circulations associated with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied using three types of models: a linear, continuously stratified (LCS) model and a nonlinear, -layer model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model (COCO). Solutions are wind forced, and obtained with both open and closed Indonesian passages. Layers 1-4 of LOM correspond to near-surface, thermocline, subthermocline (thermostad), and upper-intermediate (AAIW) water, respectively, and analogous layers are defined for COCO.The three models share a common dynamics. When the Indonesian passages are abruptly opened, barotropic and baroclinic waves radiate into the interiors of both oceans. The steady-state, barotropic flow field from the difference (open − closed) solution is an anticlockwise circulation around the perimeter of the southern Indian Ocean, with its meridional branches confined to the western boundaries of both oceans. In contrast, steady-state, baroclinic flows extend into the interiors of both basins, a consequence of damping of baroclinic waves by diapycnal processes (internal diffusion, upwelling and subduction, and convective overturning). Deep IT-associated currents are the subsurface parts of these baroclinic flows. In the Pacific, they tend to be directed eastward and poleward, extend throughout the basin, and are closed by upwelling in the eastern ocean and Subpolar Gyre. Smaller-scale aspects of their structure vary significantly among the models, depending on the nature of their diapycnal mixing.At the exit to the Indonesian Seas, the IT is highly surface trapped in all the models, with a prominent, deep core in the LCS model and in LOM. The separation into two cores is due to near-equatorial, eastward-flowing, subsurface currents in the Pacific Ocean, which drain layer 2 and layer 3 waters from the western ocean to supply water for the upwelling regions in the eastern ocean; indeed, depending on the strength and parameterization of vertical diffusion in the Pacific interior, the draining can be strong enough that layer 3 water flows from the Indian to Pacific Ocean. The IT in COCO lacks a significant deep core, likely because the model’s coarse bottom topography has no throughflow passage below 1000 m. Consistent with observations, water in the near-surface (deep) core comes mostly from the northern (southern) hemisphere, a consequence of the wind-driven circulation in the tropical North Pacific being mostly confined to the upper ocean; as a result, it causes the near-surface current along the New Guinea coast to retroflect eastward, but has little impact on the deeper New Guinea undercurrent.In the South Pacific, the IT-associated flow into the basin is spread roughly uniformly throughout all four layers, a consequence of downwelling processes in the Indian Ocean. The inflow first circulates around the Subtropical Gyre, and then bends northward at the Australian coast to flow to the equator within the western boundary currents. To allow for this additional, northward transport, the bifurcation latitude of the South Equatorial Current shifts southward when the Indonesian passages are open. The shift is greater at depth (layers 3 and 4), changing from about 14°S when the passages are closed to 19°S when they are open and, hence, accounting for the northward-flowing Great Barrier Reef Undercurrent in that latitude range.After flowing along the New Guinea coast, most waters in layers 1-3 bend offshore to join the North Equatorial Countercurrent, Equatorial Undercurrent, and southern Tsuchiya Jet, respectively, thereby ensuring that northern hemisphere waters contribute significantly to the IT. In contrast, much of the layer 4 water directly exits the basin via the IT, but some also flows into the subpolar North Pacific. Except for the direct layer 4 outflow, all other IT-associated waters circulate about the North Pacific before they finally enter the Indonesian Seas via the Mindanao Current.  相似文献   

15.
通过对楚科奇海及邻近的北冰洋深水区表层沉积物中有机碳同位素含量(δ13C)、氮同位素含量(δ15N)及生物成因SiO2(BSiO2)含量分析,结果表明海源和陆源有机质的分布受海区环流结构和营养盐结构所制约.楚科奇海中西部和楚科奇海台受太平洋富营养盐海水的影响,海洋生产力高,沉积物中海源有机质和BSiO2含量高;靠阿拉斯加一侧海域海水的营养盐含量和生产力都偏低,沉积物中陆源有机质比重增加;在研究区北部和东北部的楚科奇高地和加拿大海盆,冰封时间较长,营养盐供应少,海洋生产力低,但来自马更些河和阿拉斯加北部的陆源有机质增多,沉积物中BSiO2含量小于5%,海源有机质百分含量小于40%.由于亚北极太平洋水通过楚科奇海向北冰洋海盆输送,研究区营养盐池表现为开放系统,营养盐的利用率与它的供应成反比,与海洋生产力成反比.  相似文献   

16.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

17.
本文对中印度洋海盆深海富稀土沉积区两根柱样GC02和GC06开展了沉积物涂片观察,X-射线衍射分析,主量、微量和稀土元素分析,以及单矿物原位微区地球化学分析等,探讨了其地球化学特征、物质来源及稀土元素(REY)的富集机制。结果表明,GC02柱状沉积物类型为钙质黏土和沸石黏土,GC06柱状沉积物类型为钙质黏土、含沸石黏土和沸石黏土。稀土元素主要在含沸石黏土和沸石黏土中富集。北美页岩标准化(NASC)配分模式指示沉积物的REY主要来源于海水,矿物学和地球化学等特征表明该地区沉积物陆源组分可能主要源于澳大利亚的风尘物质。元素相关性和CaO/P2O5比值等指示了深海富稀土沉积中REY的主要赋存矿物为生物磷灰石(鱼牙/骨等),其次为铁锰微结核。本文总结和探讨了深海富稀土沉积的形成机制,完善了深海富稀土沉积形成过程的概念模型。  相似文献   

18.
基于全球海洋及其上空大气中关于有机磷酸酯(OPEs)的数据,分析了目前OPEs在全球海洋及其上空大气的分布特征、影响因素以及当前研究存在的不足。总结发现,海水中的OPEs主要来自河流输送,且浓度分布特征表现为由近及远、由浅及深逐渐递减。磷酸三(2-氯乙基)酯(TCEP)、磷酸三(1-氯-2-丙基)酯(TCPP)和磷酸三(1,3-二氯异丙基)酯(TDCPP)三种卤化OPEs是海水中主要污染物;输入到海水中的OPEs经过颗粒沉降等作用沉积到海洋沉积物中,随之,沉积物中的OPEs可能反析出或直接累积,在海洋沉积物中形成一个大的OPEs储存库。分析北太平洋到北冰洋表层沉积物中OPEs的浓度发现,从白令海峡到北冰洋,随着纬度的增加OPEs的浓度也普遍增加,且相对于非卤化OPEs,卤化OPEs更易被运输到偏远海域。总有机碳(TOC)与大洋沉积物中OPEs的浓度无相关性,但与近海海洋沉积物中OPEs的浓度呈正相关,TCEP和磷酸三异丁酯(TiBP)为海洋沉积物中主要污染物;海洋上空大气与水体中的OPEs是不可分割的,海洋上空大气中的OPEs一部分通过大气沉降进入海水,一部分继续迁移到更偏远区域,气团来源是影响其分布的主要因素。对比OPEs在全球海洋上空大气中的浓度分布发现,南北半球并无明显差异,TCEP和TCPP是海洋上空大气中主要污染物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号