首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
采用便携式空气污染监测设备对广州市环城高速内的中心城区PM2.5污染情况进行移动监测,获取225.7万条频率为1 Hz的PM2.5监测数据,基于此对研究区进行10 m×10 m高时空分辨率的PM2.5污染模拟,并分析移动采集的可靠性及城市中心区PM2.5污染时空模式。结果显示:天气状况稳定条件下移动监测的城市PM2.5数据在时间维度与固定监测站点数据呈现较显著相关性(R 2为0.72~0.86);广州市中心城区的PM2.5污染时空分布在短时间内具有显著的时空分异特征:时间上,干、湿季的平均逐时极差分别为27和11 μg/m3,质量浓度最高值和最低值出现的时段与当天的背景质量浓度值有关;空间上,交通枢纽、商业中心、工业园和大型商贸市场附近PM2.5污染风险高,公园绿地、高校、高级住宅区等风险相对较低,且呈干季西高东低、南高北低,湿季东高西低的空间分异特征。  相似文献   

2.
在科学识别城市建成区的基础上,运用探索性空间分析和空间计量模型,分析了2000–2015年中国城市PM2.5浓度的时空特征及其影响因素。结果表明:2000–2015年中国城市PM2.5浓度呈倒“L”型增长,而PM2.5浓度高的城市具有大规模集聚的特征,城市群即是PM2.5浓度高的城市聚集区,受自然因素、社会经济因素和城市形态因素共同作用。在2000–2005年,中国城市PM2.5年平均浓度从31.19μg m–3增加到46.00μg m–3,河北、山东、河南交汇地区出现小规模高浓度集聚。在2005–2010年、2010–2015年两个阶段,城市PM2.5浓度年平均增长率放缓,2010年为47.67μg m–3,2015年为48.72μg m–3。高浓度集聚区域不断扩大,在2010年扩张至京津冀、长江中部、长江三角洲、成都平原,研究期末已经扩大至整个华北平原、哈长地区。  相似文献   

3.
通过移动走航式观测获取长沙市岳麓山周边道路不同通勤时段PM2.5浓度数据,结合土地覆盖、兴趣点、数字高程模型、邻近污染源和街区路网分布5类微环境地理因子,采用空间聚合、空间自相关分析、分位数回归分析等方法,探究研究区内道路PM2.5浓度的时空变化及其与城市微环境地理因子的潜在联系.结果表明,长沙市岳麓山周边道路不同通勤时段PM2.5浓度时空差异明显:晚高峰时段PM2.5中位数浓度高达31.5μg/m3,早高峰和非高峰时段分别为28.2μg/m3和22.0μg/m3;高值PM2.5浓度在通勤高峰时段空间分布相对集中,在非高峰时段则相对分散.就地理因子影响而言:不同通勤时段影响PM2.5浓度的微环境地理因子在数量与类别上存在差异;同时,微环境地理因子对不同分位数道路PM2.5浓度的影响也具有异质性.依据各通勤时段不同地理因子的影响趋势和影响程度,采取相应的针对性调控、空间合理配置等干预策略有望全面降低道路PM2.5浓度.本研究可为基于空气质量视角的城市空间规划与开发建设调控提供科学依据.  相似文献   

4.
刘媛  张蕾  陈娱  陆玉麒  周媛媛  王峰 《地理科学》2023,43(1):152-162
以中国286个主要地级市为研究区域,基于2003—2016年中国地级市大气PM2.5质量浓度栅格数据及各地级市社会经济数据,运用空间自相关和空间面板杜宾模型,揭示了中国地级市PM2.5质量浓度的时空格局与影响因素。研究显示:(1)中国PM2.5污染在时序演化上呈“M”型波动态势,在空间分布上以胡焕庸线为界呈现出“东高西低”的集聚型格局;(2)中国地级市PM2.5污染在空间效应上呈现出显著的正相关性,表明区域间大气污染存在交互影响;(3)人口密度与非农产业从业人员占比对PM2.5质量浓度升高的贡献最大,而液化石油气供气总量与第三产业占GDP的比重对PM2.5有较为显著的负向消减作用。  相似文献   

5.
以中国286个主要地级市为研究区域,基于2003—2016年中国地级市大气PM2.5质量浓度栅格数据及各地级市社会经济数据,运用空间自相关和空间面板杜宾模型,揭示了中国地级市PM2.5质量浓度的时空格局与影响因素。研究显示:(1)中国PM2.5污染在时序演化上呈“M”型波动态势,在空间分布上以胡焕庸线为界呈现出“东高西低”的集聚型格局;(2)中国地级市PM2.5污染在空间效应上呈现出显著的正相关性,表明区域间大气污染存在交互影响;(3)人口密度与非农产业从业人员占比对PM2.5质量浓度升高的贡献最大,而液化石油气供气总量与第三产业占GDP的比重对PM2.5有较为显著的负向消减作用。  相似文献   

6.
王少剑  高爽  陈静 《地理研究》2020,39(3):651-668
基于全国城市的PM2.5监测数据,识别PM2.5的时空分布特征,并着重利用地理加权回归模型分析自然和社会经济因素对PM2.5影响的空间异质性。结果显示:2015年全国PM2.5的年均浓度为50.3 μg/m3,浓度变化呈现冬高夏低,春秋居中的“U型”特征;PM2.5的空间集聚状态明显,其中京津冀城市群是全国PM2.5的污染重心。地理加权回归结果显示:影响因素除高程外,其余指标均呈现正负两种效应,且影响程度具有显著的空间差异性特征。从回归系数的贡献均值来看,自然因素对城市PM2.5浓度影响强度由高到低依次是高程、相对湿度、温度、降雨量、风速、植被覆盖指数;各类社会经济指标对城市PM2.5浓度影响强度排名依次是人口密度、研发经费、建设用地比例、产业结构、外商直接投资、人均GDP。由于各指标对城市PM2.5浓度变化的影响程度存在着空间异质性,因此在制定大气治理对策时可以考虑不同指标影响程度的空间差异,从而使得治霾对策更具针对性。  相似文献   

7.
梁景天  吴健生  赵宇豪  陈弼锴  王怡 《地理研究》2020,39(11):2642-2652
深圳市于2018年6月建成了全国首个街道空气监测网络“一街一站”,并对全市74个街道进行月均PM2.5浓度排名,向公众通报空气质量排名倒数十位的街道,以落实基层治理大气污染的责任。本研究基于深圳市街道空气监测网络的数据,分析了深圳市PM2.5浓度的时空特征,使用双重差分模型检验空气质量排名通报是否能发挥环保部门所期待的效果,进一步促使PM2.5浓度排名靠后的街道改善其空气质量。结果表明:① 基于街道空气监测的深圳市年均PM2.5浓度为22.4 μg/m3,月均浓度最低值出现在7月,最高值出现在1月,与国家站监测结果之间无显著性差异。② 深圳市街道的PM2.5浓度具有较高的空间集聚性,高值主要聚集在西北部,低值主要聚集在中南部,而国家监测站难以准确表征深圳市PM2.5浓度空间分布特征。③ 考虑了个体和时间固定效应的双重差分模型分析结果表明,对深圳市月均PM2.5浓度较高、空气质量排名靠后的街道进行通报,其随后1~2个月的PM2.5浓度仍受该月污染的持续性影响,而通报行为无显著性影响;到随后第3个月,该月污染的持续性影响下降到较小的程度,此时通报行为对PM2.5浓度呈显著降低作用,且影响程度大于污染的持续性影响。  相似文献   

8.
农村散煤使用对冬季重污染等贡献显著,更会直接污染室内空气,影响人群健康。除了“煤改电、煤改气”之外,清洁煤和成型生物质也被认为是降低散煤污染的有效途径,在一些政策和行动中被推广。然而,目前还缺乏不同取暖模式下居民室内空气质量差异及取暖排放贡献的定量研究,是清洁取暖环境效益评估中的短板。本文在北方农村地区开展了覆盖1600户整个取暖季的细颗粒物(PM2.5)实地监测,分析了居民室内PM2.5污染的空间差异及不同取暖方式的影响。研究表明,北方农村取暖季室内PM2.5浓度均值为102μg/m3,但户间差异很大,从19μg/m3到497μg/m3。使用传统散煤和生物质取暖的家庭,取暖季室内PM2.5浓度高达162μg/m3和144μg/m3。而使用清洁煤或成型生物质取暖的家庭,室内PM2.5显著降低,约为84μg/m3,且有56%的时间日均浓度超过国家标准...  相似文献   

9.
基于灰色关联模型对江苏省PM2.5浓度影响因素的分析   总被引:2,自引:0,他引:2  
贺祥  林振山  刘会玉  齐相贞 《地理学报》2016,71(7):1119-1129
采用克里金插值法分析2014年江苏省PM2.5浓度空间分布特征,运用灰色关联模型计算PM2.5浓度与影响因素间关联度,分析主要影响指标因子与PM2.5浓度空间分布的相互关系。结果显示:① 江苏省PM2.5浓度具有沿海低、内陆高,南部高、北部低的空间分布特征;② PM2.5污染来源指标层的权重值最大(wi = 0.4691),空气质量与气象要素指标层的权重稍大(wi = 0.2866),城市化与产业结构层的权重值最小(wi = 0.2453);③ 在27个指标因子中,与PM2.5浓度关联度为中度的仅有公路客运量、房屋建筑施工面积、园林绿地面积、人口密度等4个指标因子,PM2.5与其余指标因子均呈强度相关联,其中与PM10、O3、降雨量、公路货运总量、地区工业总产值和第二产业占地区生产总值比重等指标的关联度较高;④ PM2.5污染源指标层与PM2.5浓度关联度值较大的城市分别是南京、无锡、常州、南通、泰州市;城市化与产业结构指标层与PM2.5浓度关联度值较大的城市分别是徐州、苏州、盐城、常州市;空气质量与气象要素指标层与PM2.5浓度关联度值较大的城市分别是盐城、扬州、常州、南通市。综合分析可知,影响指标因子关联度值与PM2.5浓度空间分布有较好相关性。研究表明,灰色关联模型可有效分析影响PM2.5浓度的主要因素,能对PM2.5浓度影响指标进行定量分析与评价。  相似文献   

10.
李衡  韩燕 《世界地理研究》2022,31(1):130-141
选取2000—2017年大气PM2.5遥感反演数据集,综合运用标准差椭圆及地理探测器等方法,揭示了黄河流域PM2.5的时空演变特征及其影响因素。结果表明:2000—2017年黄河流域PM2.5年均浓度整体呈现先快速增加后又波动变化的演变趋势,空气污染状况不容乐观;黄河流域PM2.5空间集聚性明显,低值区稳定分布在内蒙古中部和西南部高原地区,高值区一方面分布在自然条件较差的西北内陆,另一方面集中在人类活动强度较高的地带;黄河流域PM2.5污染总体呈现出“西北-东南”方向的分布格局,其浓度在地理空间上呈现分散化的趋势,即污染的主要范围有所扩大;人口密度、工业化水平、外商投资以及科技支出等经济社会因素对PM2.5浓度存在显著影响,但其作用强度及方向存在差异。  相似文献   

11.
中国城市群地区PM2.5时空演变格局及其影响因素   总被引:2,自引:0,他引:2  
王振波  梁龙武  王旭静 《地理学报》2019,74(12):2614-2630
城市群作为中国新型城镇化主体形态,是支撑全国经济增长、促进区域协调发展、参与国际分工合作的重要平台,也是空气污染的核心区域。本文选取2000-2015年NASA大气遥感影像反演PM2.5数据,运用GIS空间分析和空间面板杜宾模型,揭示了中国城市群PM2.5的时空演变特征与主控因素。结果显示:① 2000-2015年中国城市群PM2.5浓度呈现波动增长趋势,2007年出现拐点,低浓度城市减少,高浓度城市增多。② 城市群PM2.5浓度以胡焕庸线为界呈现东高西低的格局,城市群间空间差异性显著且不断扩大,东部、东北地区浓度提升更快。③ 城市群PM2.5年均浓度空间集聚性显著,以胡焕庸线为界,热点区域集中东部,范围持续增加,冷点集中在西部,范围持续缩小。④ 城市群内各城市间PM2.5浓度存在空间溢出效应。不同城市群影响要素差异显著,工业化和能源消耗对PM2.5污染有正向影响;外商投资在东南沿海和边境城市群对PM2.5污染具有负向影响;人口密度对本地区PM2.5污染主要具有正向影响,对邻近地区则相反;城市化水平在国家级城市群对PM2.5污染有负向影响,在区域性和地方性城市群则相反;产业结构高级度对本地区PM2.5污染有负向影响,对邻近地区则相反;技术扶持度对PM2.5污染的影响显著,但存在滞后性和回弹效应。  相似文献   

12.
选择西北干旱区城市乌鲁木齐市为研究区,利用MODIS气溶胶产品(AOD)数据和地面监测站PM2.5浓度数据进行相关性分析,结果表明:二者相关性良好,对AOD数据进行垂直订正和湿度订正后,发现相关性进一步提升(0.49~0.80,p<0.01)。对订正后AOD数据与地面PM2.5浓度进行建模并选取最优模型,结果均为一元三次模型且模型R2在0.27~0.69之间,其中春秋两季模型R2较高,夏季较低。对模型精度进行验证结果,显示春季与秋季模型精度良好,夏季较差,说明MODIS气溶胶光学厚度数据可以用于反演干旱区地面PM2.5浓度值,对卫星遥感在干旱区地面空气监测应用提供了新的方法和思路。  相似文献   

13.
京津冀城市群大气污染的时空特征与影响因素解析   总被引:33,自引:5,他引:28  
京津冀城市群是中国雾霾最严重的区域,在京津冀协同发展背景下,探究该地区大气污染的时空分布和影响因素具有重要意义。运用空间自相关分析和三种空间计量模型,分析了京津冀202个区县PM2.5的时空分异特征,创新性地对自然与人文影响因素贡献及其空间溢出效应进行系统地甄别和量化。结果表明:2000-2014年来京津冀城市群PM2.5浓度整体呈上升趋势,季节上呈秋冬高、春夏低,空间上呈东南高、西北低的特点,且城市建成区PM2.5浓度比周围郊区和农村平均高10~20 μg/m3;2014年仅有13.9%的区县空气质量达标,PM2.5浓度存在显著的空间集聚性与扩散性,城市间交互影响距离平均为200 km,邻近地区的PM2.5每升高1%,将导致本地PM2.5至少升高0.5%;社会经济内因对PM2.5主要是正向影响,自然外因主要是负向影响;影响因素中对本地大气污染的直接效应贡献强度依次是:年均风速>年均气温>人口密度>地形起伏度>第二产业占比>能源消费>植被覆盖度,人均GDP、年降水量和相对湿度对本地PM2.5没有显著影响;对邻近地区大气污染具有显著空间溢出效应的因素排序是:植被覆盖度>地形起伏度>能源消费>人口密度;对于自然和人文影响因素应分别采取针对性的适应策略和调控策略,加强区域间联防联控与合作治理,在城市群规划中注重环保规划与立法。  相似文献   

14.
乌鲁木齐大气颗粒物的时空分布规律   总被引:1,自引:0,他引:1       下载免费PDF全文
依据峡口城市乌鲁木齐市2013-2016年6个环境监测站逐时的6类污染物数据,分析大气污染物的时空分布规律。总体来看,乌鲁木齐市以颗粒物污染为主,即PM10、PM2.5污染严重。从季节上来看,乌鲁木齐污染物浓度大多冬季高、夏季低,春秋季次之。春、夏、秋、冬PM2.5的浓度依次为59.8、40.5、67.8、139.6 μg·m-3,而PM10则是148.6、119.7、146.4、209.4 μg·m-3,粗细粒子浓度在春秋季的细微变化凸显在春季沙尘天气的影响。从日变化方面来看,污染物多呈现为双峰型结构。PM10、PM2.5春夏秋3个季节都是在子夜1:00时浓度最高,9:00~10:00时次之,但是冬季日最高值则出现在17:00时左右,次峰值出现在21:00~22:00时。从空间分布来看,颗粒物浓度总体上是中心城区低、四周高的分布格局;从PM2.5浓度占PM10浓度比重分析来看,冬季比重最高,达70%,以城区及城北最为明显,达73%,日变化分布则主要集中在下午至夜间,且冬季比重达71%。  相似文献   

15.
采用2018年敦煌莫高窟第16窟窟内与窟区PM10浓度及气象数据,分析PM10时空分布特征及其影响因素。结果表明:(1)两处监测点PM10浓度主要分布在50 μg·m-3以下,受重污染天气影响较小;春、冬、秋、夏季依次降低,窟区PM10浓度在春、冬季高于窟内,夏、秋季反之。(2)PM10浓度3月最高,9月最低,5—9月窟内月均值高于窟区。PM10污染日数窟内5月最多,而窟区3、5月较多。(3)PM10浓度日变化曲线在春季和秋季呈“双峰”型,夏季和冬季呈“单峰”型。(4)在半封闭环境的洞窟内,沙尘暴发生前后,PM10浓度达到极值及恢复至原来水平的时间均滞后于窟区。(5)在不同季节PM10浓度与气温、风速和降水呈负相关。除秋季外,PM10浓度与相对湿度、气压呈正相关。(6)窟区全年主风向为ESE,在冬春两季,此风向PM10浓度最高,PM10主要来自三危山前的戈壁滩、干涸的大泉河河道以及窟前裸露的地表积尘。  相似文献   

16.
长三角多维城市化对PM2.5浓度的非线性影响及驱动机制   总被引:1,自引:0,他引:1  
探索多维城市化对PM2.5浓度的非线性影响及驱动机制,是城市群高质量发展的重要课题。以2000—2017年长江三角洲地区城市面板遥感影像和统计数据为样本,采用反距离权重空间插值、空间自相关和标准差椭圆等方法探查其PM2.5浓度的时空演变规律,并运用系统动态面板回归模型研判多维城市化对PM2.5浓度的非线性影响及驱动机制。结果表明:① 2000—2017年,长三角PM2.5浓度由低污染等级向高污染等级演替;PM2.5浓度整体呈现由东南向西北方向递增的空间趋势。② PM2.5浓度呈现显著空间集聚与关联特征;PM2.5浓度重心总体由东南向西北方向偏移,在东西方向上趋向分散,在南北方向上逐渐极化。③ 长三角城市化子系统不同发展阶段对PM2.5浓度的非线性影响存在显著差异。经济城市化与PM2.5浓度呈倒“N”型曲线关系,二者存在环境库兹涅茨曲线(EKC)关系,当人均GDP大于63709元时,经济城市化对PM2.5浓度将产生抑制效应,表明城市综合质量提升和发展方式转变是PM2.5治理的关键;而人口城市化、土地城市化与PM2.5浓度的关系仅是倒“U”型曲线的左侧部分,二者与空气质量改善的拐点尚有一定距离。人口规模、外商直接投资、工业产业结构均对PM2.5浓度具有显著的正向效应,而环境规制对PM2.5浓度具有显著的抑制效应。长三角PM2.5浓度的时空异质性特征是在经济社会因素和政府调控等诸多因素交互叠加、循环累积作用下形成,其中,经济社会因素扮演着主角。本文为探索多维城市化对PM2.5浓度的非线性影响提供了新视角,以期为实现长三角环境保护与城市可持续发展的协调提供重要参考。  相似文献   

17.
利用NCEP再分析资料、逐小时污染物浓度数据、风廓线雷达及地面常规观测资料,对北京2018年3月26—29日一次“先霾后沙”的空气污染过程进行了分析。结果表明:霾污染期间PM2.5峰值浓度为242 μg·m-3,PM2.5/PM10值为0.86。受蒙古气旋影响,PM10浓度出现爆发性增长,增长速率达到912 μg·m-3·h-1,PM2.5/PM10值下降至0.11。霾主要影响时段边界层内以西南风为主,平均通风量为15 907 m2·s-1,大气边界层以稳定的弱上升或下沉运动为主;而沙尘影响时段平均通风量为9 226 m2·s-1,沙尘天气爆发前边界层明显的下沉运动先于地面污染物浓度的变化。基于后向轨迹模式和潜在源贡献分析方法PSCF计算结果,霾影响时段河北中南部、山西中部等地对北京PM2.5贡献较多;而沙尘影响时段,北京地区的PM10主要来源于内蒙古中部和辽宁西部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号