首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinoshita  D.  Watanabe  J.  Fukushima  H.  Sekiguchi  T.  Yamamoto  N.  Abe  S. 《Earth, Moon, and Planets》1997,77(3):265-269
A sequential imaging observation of the ion tail of Comet C/Hale-Bopp 1995O1 was carried out in February–March 1997 with a wide-field CCD imaging camera using narrow band filters for two ion species; CO+ and H2O+ along with those for blue and red continuum. From the surface photometry of the ion tail of two species, we derived a relationship between plasma density and distance from the nucleus. The local velocity of the ion flow as a function of the distance from the nucleus was also estimated on the basis of some assumptions. We report preliminary results of our analysis, and discuss some characteristics of cometary plasma and its interaction with interplanetary magnetic field (IMF). May the source be with you! This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The flow of plasma on the sunward side of a comet is investigated by means of an axialsymmetric model based on hydrodynamics modified by source terms. The model assumes a given curvature of the isobaric surfaces, which corresponds to paraboloids around the nucleus of the comet. The flow on the axis can be represented by a solution of a system of seven ordinary differential equations (respectively five in case of pure photo-ionization). The flow pattern always contains a widely detached bow shock and a contact discontinuity separating a cavity with purely cometary plasma from the transition region containing also solar wind ions. The model is applied to the special case where the cometary gas is ionized by the solar UV radiation only. Numerical solutions are integrated for five levels of production of neutral gas by the comet and for seven typical situations in the undisturbed solar wind. The results imply standoff distances of the stagnation point from the nucleus of the order of 10 000 km or more, and distances of the bow shock of the order of 106–107 km.  相似文献   

3.
Deep Space 1 at comet 19P/Borrelly: Magnetic field and plasma observations   总被引:1,自引:0,他引:1  
On September 22, 2001 the Deep Space 1 spacecraft performed a flyby at comet 19P/Borrelly at a solar distance of 1.36 AU leading the Earth by 74° in longitude. The spacecraft-comet distance at closest approach was 2171 km. The bow shock had a magnetic compression ratio of 2.5 at a distance of 147 100 km from the nucleus. Deep Space 1 first entered the sheath region essentially from the north polar region. Fluctuations from the cometary ion pickup were present throughout the sheath region and even well upstream of the shock, as expected. The magnetic field pileup region had a peak field strength of 83 nT and was shown to be consistent with a pressure equal to the solar wind ram pressure. The peak field location was offset from the time of closest approach. It is uncertain whether this is a spatial or temporal variation. Draping of magnetic fields around the nucleus was sought, but evidence for this was not apparent in the data. A possible explanation is that the interplanetary solar wind was composed of turbulent short-scale fields, and thus the fields were not symmetric about the point of closest approach. During the flyby phase there were in general few intervals of ACE data where there were large scale Parker spiral fields. With the addition of plasma data, the shock properties are investigated. The characteristics of magnetic draping, pileup and fluctuations are explored. These comet 19P/Borrelly results are contrasted with other cometary flyby results.  相似文献   

4.
If the structure of the magnetic field and electric current in the cometary type I tail can be represented by an electric current circuit, disruption of the cross-tail current system may lead to a current discharging through the cometary ionosphere, and the dissipation of the magnetic energy stored in the tail. From the point of view of energy budget, a tail-aligned magnetic field on the order of 10γ will be sufficient to produce a strong ionization effect of the cometary atmosphere.  相似文献   

5.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

6.
During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of ~5.2 Re traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2.0–5.4. The locations of the Explorer 45 plasmapause crossings (determined by the saturation of the d.c. electric field double probe) during this month were compared to the latitudinal decreases of the H+ density observed on ISIS 2 (by the magnetic ion mass spectrometer) near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Hence, the abruptly decreasing H+ density on the low latitude side of the ionospheric trough is not a near earth signature of the equatorial plasmapause. Vertical flows of the H+ ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 km s?1 near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H+ trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause. The existence of upward accelerated H+ flows to possibly supersonic speeds during the refilling of magnetic flux tubes in the outer plasmasphere could produce an equatorial plasmapause whose field lines map into the ionosphere at latitudes which are poleward of the H+ density decrease.  相似文献   

7.
There are many aspects of observational evidence that cometary nuclei have irregular or nonspherical shape. The triaxial figure of the Halley's Comet nucleus is a well known fact. Therefore, the nucleus shape plays a significant role in consideration of the formation and evolution of comets and several attempts have been made to explain their nonsphericity. These studies were mainly based on the random-walk schemes for the aggregation processes. Although some results indeed lead to irregularities and deviation from sphericity, the spherical or irregular shape seem to be prevailing results. On the other hand the triaxial figure can be formed by the tidal and rotational forces. Thus, the assumption that the shape of the cometary nucleus due to some of these effects is in principle acceptable. In here assumed scenario already evolved cometary nucleus is situated as a satellite in the gravitation field of a planetary-like body. Since the rigidity of the nucleus is low, it may be easily transferred in the state of a synchronous satellite and in its shape could be imprinted the dynamical effects from this epoch. Here presented results indicate, that such a possibility should be seriously considered. The theory of this process is applied to the nucleus of comet Halley. It is shown, that the nucleus might be synchronously orbiting around a planetary-like hypothetical body with a period of 0.7 days. The minimal bulk tensile strength of the cometary material of about 102 N m–2 is estimated.  相似文献   

8.
Optical linear polarization measurements of stars in the region of the cometary globules CG 30–31 in Vela–Puppis are presented. A polarization map representing the geometry of the magnetic field in the cometary globule complex is produced. The magnetic field is found to be nearly perpendicular to the cometary tails. This is unlike the case of the cometary globule CG 22 in which the field had earlier been found to be aligned with the tail. The observed field direction is more or less parallel to the bipolar molecular outflow from the young stellar object IRS 4 embedded in the head of CG 30.  相似文献   

9.
The Plasma Experiment for Planetary Exploration (PEPE) made detailed observations of the plasma environment of Comet 19P/Borrelly during the Deep Space 1 (DS1) flyby on September 22, 2001. Several distinct regions and boundaries have been identified on both inbound and outbound trajectories, including an upstream region of decelerated solar wind plasma and cometary ion pickup, the cometary bow shock, a sheath of heated and mixed solar wind and cometary ions, and a collisional inner coma dominated by cometary ions. All of these features were significantly offset to the north of the nucleus-Sun line, suggesting that the coma itself produces this offset, possibly because of well-collimated large dayside jets directed 8°-10° northward from the nucleus as observed by the DS1 MICAS camera. The maximum observed ion density was 1640 ion/cm3 at a distance of 2650 km from the nucleus while the flow speed dropped from 360 km/s in the solar wind to 8 km/s at closest approach. Preliminary analysis of PEPE mass spectra suggest that the ratio of CO+/H2O+ is lower than that observed with Giotto at 1P/Halley.  相似文献   

10.
We obtained spectra of comet C/1999 S4 (LINEAR) with the UAGS spectrograph(long slit and CCD) installed on the 1-m Zeiss reflector of the SAO of the RAS(Northern Caucuses, Nizhny Arkhyz) on July 23/24, 26/27 and 27/28, 2000. OnJuly 22/23, before the splitting of the cometary nucleus, several emission lines,such as C2, C3, CN, NH, CH, NH2, CO+, H2O+ wereclearly identified in the spectra. The inspections of the CCD spectra obtainedon July 27/28, 2000 reveals only very weak emission lines superimposed on thesolar reflection spectrum. From analyzing the surface brightness profile of C2 along the slit the velocity of separation of two secondary fragments (V = 10 km/h) and the energy of the fragment separation (E = 8.7 × 1015 erg) were estimated. A luminescence cometary continuum of 26% of the total continuum level is detected in the spectra of the comet at 5000 Å. Possible mechanisms of nucleus splitting are discussed.  相似文献   

11.
Cometary tail rays are traces of the magnetic fields caught in the cometary magnetosphere. Time variations of these rays give us a way to measure the local solar wind velocity at the location of a comet. We introduce a simple method for determining the radial velocity of the solar wind by observing the ray folding motion, and show an example of its application to comet P/Brorsen-Metcalf 1989o, which resulted in 340 ± 35 km s–1.  相似文献   

12.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

13.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

14.
In this study we present a review of low-temperature magnetic properties of alabandite (Fe, Mn)S, daubreelite FeCr2S4, pyrrhotite Fe1−xS and troilite FeS updated with new experimental data. The results indicate that besides FeNi alloys mainly daubreelite with its Curie temperature TC ∼ 150 K and strong induced and remanent magnetizations may be a significant magnetic mineral in cold environments and may complement that of FeNi or even dominate magnetic properties of sulfide rich bodies at temperatures below TC.Comets are known to contain iron-bearing sulfides within dusty fraction and their surfaces are subject to temperature variations in the range of 100-200 K down to the depth of several meters while the cometary interior is thermally stable at several tens of Kelvin which is within the temperature range where alabandite, daubreelite or troilite are “magnetic”. Thus not only FeNi alloys, but also sulfides have to be considered in the interpretation of magnetic data from cometary objects such as will be delivered by Rosetta mission. Modeling indicates that magnetic interactions between cometary nucleus containing iron-bearing sulfides and interplanetary magnetic field would be difficult, but not impossible, to detect from orbit. Rosetta’s Philae lander present on the surface would provide more reliable signal.  相似文献   

15.
The energization of positive ions in front of a cometary bow shock is investigated. Ions produced by ionization of the cometary neutrals interact with the solar wind protons to produce, among other waves, large amplitude oscillations of the ambient magnetic field. Such oscillations are convected towards the comet at the unperturbed solar wind speed far from the shock and at a lower speed closer to the shock (due to the solar wind mass loading) ; hence, they can energize the suprathermal ions by Fermi acceleration. The spatial extension of the acceleration region is of the order of 106 km and the resulting ion energy spectrum is harder than in the Earth's bow shock case. The energization of cometary ions produces an additional deceleration of the solar wind, such that the cometary bow shock of Halley-type comet may be regarded as a “cosmic ray shock”.  相似文献   

16.
Dynamic behavior of the coupled ionosphere-protonosphere system in the magnetospheric convection electric field has been theoretically studied for two plasmasphere models. In the first model, it is assumed that the whole plasmasphere is in equilibrium with the underlying ionosphere in a diurnal average sense. The result for this model shows that the plasma flow between the ionosphere and the protonosphere is strongly affected by the convection electric field as a result of changes in the volume of magnetic flux tubes associated with the convective cross-L motion. Since the convection electric field is assumed to be directed from dawn to dusk, magnetic flux tubes expand on the dusk side and contract on the dawn side when rotating around the earth. The expansion of magnetic flux tubes on the dusk side causes the enhancement of the upward H+ flow, whereas the contraction on the dawn side causes the enhancement of the downward H+ flow. Consequently, the H+ density decreases on the dusk side and increases on the dawn side. It is also found that significant latitudinal variations in the ionospheric structures result from the L-dependency of these effects. In particular, the H+ density at 1000 km level becomes very low in the region of the plasmasphere bulge on the dusk side. In the second model, it is assumed that the outer portion of the plasmasphere is in the recovery state after depletions during geomagnetically disturbed periods. The result for this model shows that the upward H+ flux increases with latitude and consequently the H+ density decreases with latitude in the region of the outer plasmasphere. In summary, the present theoretical study provides a basis for comparison between the equatorial plasmapause and the trough features in the topside ionosphere.  相似文献   

17.
The stability of both the main cometary plasma tail and the tail rays is considered, taking into account the coupling between the plasma and the neutrals that flow out radially from the nucleus. It is shown that this coupling has a negligible effect on wave damping. Rather, we found that the neutral wind tends to destabilize the flanks of the main tail. On the other hand, the cometary rays are subject to both stabilizing and destabilizing effects because of the ion-neutrals drag. As a result, helical perturbations should become azimuthally asymmetric. Our study predicts that the folding rays may become wavy while approaching the tail axis, whereas they should remain straight far away from the tail axis.  相似文献   

18.
The importance of Alfvén wave generation in interacting plasmas is discussed in general and illustrated by the example of solar wind interaction with cometary plasma. The quasi-linear theory of Alfvén wave generation by cometary ions at distances far from the cometary nucleus is reviewed. The incorporation of a diabatic plasma compression effects into this theory modifies the spectrum of Alfvén waves and the integral intensity of magnetic field fluctuations previously published. These results are in quantitative agreement with thein situ observations near the comets Giacobini-Zinner and Halley. However, the polarization of quasi-linearly excited waves needs further detailed comparison with observations.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

19.
We determined brightness distribution in the plasma tail of comet C/2009 R1 (McNaught) using observations with a small Newtonian reflector (200/1000) on June 9?C12, 2010. Images of the comet were detected using short exposures with a Canon CMOS APS-C camera. The brightness distribution is simulated and the parameters of the cometary plasma tail are obtained within the diffusion model. The magnetic field induction in the cometary tail, lifetime of light particles, and the lengthwise and transverse ion diffusion coefficients are estimated.  相似文献   

20.
Using a dipole plus tail magnetic field model, H+, He++ and O 16 +6 ions are followed numerically, backward in time, from an output plane perpendicular to the axis of the geomagnetic tail, to their point of entrace to the magnetosphere as solar wind particles in the magnetosheath. An adiabatic or guiding center approximation is used in regions where the particles do not interact directly with the current sheet. A Maxwellian distribution with bulk flow is assumed for solar wind particles in the magnetosheath. Bulk velocity, density, and temperature along the magnetopause are taken from the fluid calculations of Spreiter. Using Liouville's theorem, and varying initial conditions at the output plane, the distribution function is found as a function of energy and pitch angle at the output plane. These results are then mapped to the auroral ionosphere using guiding center theory. Results show that the total precipitation rate is sufficient only for particles which enter the magnetosphere near the edges of the current sheet. Small pitch angles are favored at the output plane, but mappings to the auroral ionosphere indicate isotropic pitch angle distributions are favored with some peaking of the fluxes parallel or at other angles to the field lines. Perpendicular auroral pitch angle anisotropies are at times produced by the current sheet acceleration mechanism. Therefore, caution must be used in interpreting all such observations as ‘loss cone-trapping’ distributions. Energy spectra appear to be quite narrow for small cross-tail electric fields, and a little broader as the electric field increases. Comparisons of these results with experimental observations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号