首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

2.
In order to assess the extent of groundwater contamination by nitrate (NO3 –N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study was conducted in this area. The mean value of NO3 –N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3 –N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3, 52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table observation wells, respectively. The result showed that the groundwater samples that had NO3 –N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater NO3 –N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher than those in urban or paddy areas. NO3 –N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil.  相似文献   

3.
The effects of molecular diffusivity of H2SO4 and NH3 vapours on nucleated particles of SO42− and NO3 species are reported. Condensation sink and source rate of H2SO4 and NH3 vapours, growth rates and ratios of real to apparent nucleation rates are calculated for SO4 and NO3 aerosols using fractional contributions of them in total aerosol size-distribution during the measurement period at Pune, reported in Chate and Pranesha (2004). The percentage of nucleated SO42− and NO3 aerosols of mid-point diameter 13 nm are 2% and 3% respectively of the total particles (13 nm ≤ D p ≤ 750 nm) for both H2SO4 and NH3 diffusion. In the diameter range 75 nm ≤ D p ≤ 133 nm, it is 48% and 45% of SO42− and NO3 aerosols, respectively for NH3 diffusion and 43% and 36% of SO42− and NO3 for H2SO4 diffusion. Increase in percentage of nucleated particles of these species corresponding to mid-point diameter 133 nm around 0900 h IST is significantly higher than that of mid-point diameter 13 nm and it is due to photo-chemical nucleation, coagulation and coalescence among nucleated clusters. The ratios of real to apparent formation rates for SO42− and NO3 aerosols are 12% and 11% respectively, corresponding to mid-point diameter 13 nm, 17% and 13%, for midpoint diameter 133 nm and 12% and 9.5%, for mid-point diameter 750 nm. The results indicate that nucleation involving H2SO4 and acidic NH3 diffusion on SO42− and NO3 particles is the most relevant mechanism in this region.  相似文献   

4.
The Maoduan Pb–Zn–Mo deposit is in hydrothermal veins with a pyrrhotite stage followed by a molybdenite and base metal stage. The Re–Os model ages of five molybdenite samples range from 138.6 ± 2.0 to 140.0 ± 1.9 Ma. Their isochron age is 137.7 ± 2.7 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the nearby exposed Linggen granite porphyry gave a 206Pb/238U age of 152.2 ± 2.2 Ma and the hidden Maoduan monzogranite yielded a mean of 140.0 ± 1.6 Ma. These results suggest that the intrusion of the Maoduan monzogranite and Pb–Zn–Mo mineralization are contemporaneous. δ 34S values of sulfide minerals range from 3.4‰ to 4.8‰, similar to magmatic sulfur. Four sulfide samples have 206Pb/204Pb = 18.252–18.432, 207Pb/204Pb = 15.609–15.779, and 208Pb/204Pb = 38.640–39.431, similar to the age-corrected data of the Maoduan monzogranite. These isotope data support a genetic relationship between the Pb–Zn–Mo mineralization and the Maoduan monzogranite and probably indicate a common deep source. The Maoduan monzogranite has geochemical features similar to highly fractionated I-type granites, such as high SiO2 (73.7–75.2 wt.%) and alkalis (K2O + Na2O = 7.8–8.9 wt.%) and low FeOt (0.8–1.3 wt.%), MgO (~0.3 wt.%), P2O5 (~0.03 wt.%), and TiO2 (~0.2 wt.%). The granitic rocks are enriched in Rb, Th, and U but depleted in Ba, Sr, Nb, Ta, P, and Ti. REE patterns are characterized by marked negative Eu anomalies (Eu/Eu* = 0.2–0.4). The Maoduan monzogranite, having (87Sr/86Sr) t  = 0.7169 to 0.7170 and εNd(t) = −13.8 to −13.7, was probably derived from mixing of partial melts from enriched mantle and the Paleoproterozoic Badu group in an extensional tectonic setting.  相似文献   

5.
We measured seasonal variations in microzooplankton grazing in Long Island Sound (LIS) and San Francisco Bay (SFB). There was consistent evidence of nutrient limitation in LIS, but not SFB. We found higher chlorophyll a concentrations in LIS compared with SFB. In spite of differences in phytoplankton, there were no differences in microzooplankton abundance (summer: LIS, 12.4 ± 1.8 × 103 indiv. L−1; SFB, 14.1 ± 3.0 × 103 indiv. L−1), biomass (summer: LIS, 30.4 ± 5.0 μg C L−1; SFB, 26.3 ± 5.9 μg C L−1), or grazing rates (summer: LIS, 0.66 ± 0.19 day−1; SFB, 0.65 ± 0.18 day−1) between the two estuaries. In common with many other investigators, we found many instances of saturated as well as insignificant grazing. We suggest that saturation in some cases may result from high particle loads in turbid estuarine systems and that insignificant grazing may result from extreme saturation of the grazing response due to the need to process non-food particles.  相似文献   

6.
Temporal variation of PM10 using 2-year data (January, 2007–December, 2008) of Delhi is presented. PM10 varied from 42 to 200 μg m−3 over January to December, with an average 114.1 ± 81.1 μg m−3. They are comparable with the data collected by Central Pollution Control Board (National Agency which monitors data over the entire country in India) and are lower than National Ambient Air Quality (NAAQ) standard during monsoon, close to NAAQ during summer but higher in winter. Among CO, NO2, SO2, rainfall, temperature, and wind speed, PM10 shows good correlation with CO. Also, PM10, PM2.5, and PM1 levels on Deepawali days when fireworks were displayed are presented. In these festive days, PM10, PM2.5, and PM1 levels were 723, 588, and 536 μg m−3 in 2007 and 501, 389, and 346 μg m−3 in 2008. PM10, PM2.5, and PM1 levels in 2008 were 1.5 times lower than those in 2007 probably due to higher mixing height (446 m), temperature (23.8°C), and winds (0.36 ms−1).  相似文献   

7.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

8.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

9.
In this study, the hydrochemical characteristics of shallow groundwater in a coastal region (Khulna) of southwest Bangladesh have been evaluated based on different indices for drinking and irrigation uses. Water samples were collected from 26 boreholes and analyzed for major cations and anions. Other physico-chemical parameters like pH, electrical conductivity (EC), and total dissolved solids were also measured. Most groundwater is slightly alkaline and largely varies in chemical composition, e.g. EC ranges from 962 to 9,370 μs/cm. The abundance of the major ions is as follows: Na+ > Ca2+ > Mg2+ > K+ = Cl > HCO3  > SO4 2− > NO3 . Interpretation of analytical data shows two major hydrochemical facies (Na+–K+–Cl–SO4 2− and Na+–K+–HCO3 ) in the study area. Salinity, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. Results suggest that the brackish nature in most of the groundwaters is due to the seawater influence and hydrogeochemical processes.  相似文献   

10.
Activities of CoO in (Co,Mn)O solid solutions in contact with metallic Co have been determined on ten compositions ranging from 0.12 to 0.84 XCoO in order to calibrate the divariant equilibrium between (Co,Mn)O oxide solutions and Co metal as an oxygen fugacity sensor for application in experimental petrology. Experiments were conducted over the temperature range 900–1300 K at 1 bar, using an electrochemical technique with oxygen-specific calcia-stabilized zirconia (CSZ) electrolytes. Co + CoO or Fe + FeO was used as the reference electrode. Compositions of the (Co,Mn)O solid solutions were measured after each run by electron microprobe, and these were checked for internal consistency by measuring the lattice parameter by X-ray diffraction. Activity–composition relations were fitted to the Redlich–Kister formalism. (Co,Mn)O solid solutions exhibit slight positive deviations from ideality, which are symmetrical (corresponding to a regular solution mixing model) across the entire composition range with A0 G = 3690(±47) Jmol−1. Excess entropies and enthalpies were also derived from the emf data and gave Sex=0.77(±0.08) JK−1 mol−1 and Hex=4558(±90) Jmol−1 respectively. The experimental data from this study have been used to formulate the (Co,Mn)O/Co oxygen fugacity sensor to give an expression: where μO2 CoCoO=−492,186 + 509.322 T − 53.284 T lnT + 0.02518 T2, taken from O'Neill and Pownceby (1993). Received: 10 September 1999 / Accepted: 4 April 2000  相似文献   

11.
Measurements of uptake rates of inorganic (NO3 and NH4+) and organic (urea, glycine, and glutamic acid) N, and indirect estimates of total N uptake by bacteria, were made in four contrasting environments in sub-tropical Hong Kong waters in summer of 2008. In addition, the effects of several days of rain on N uptake rates were studied in eastern waters. Although ambient NO3 was the dominant form of N in Hong Kong waters, the dominant N form taken up by phytoplankton was usually NH4+ and organic N, including urea and amino acids, rather than NO3. Hence, because of the low NO3 uptake, there was a long turnover time for NO3 (100 days), and most of the NO3 was apparently transported offshore into deeper shelf waters. In eastern waters where NH4+ was undetectable, NO3 uptake rates were positively correlated with phytoplankton cell size. In contrast, potential rates of glutamic acid uptake were negatively correlated with phytoplankton size. N uptake rates in the smaller size fraction (0.7–2.8 μm) were less affected by the rain event, and smaller phytoplankton appeared to outcompete larger cells after several days of rain. The surface (PN)-specific N uptake rates in the >8-μm fraction decreased from 0.02 to 0.0001 h−1, while the smaller fraction only exhibited a one- to threefold decrease after the rainfall. In contrast, bacterial production and N uptake were not affected by the rain event, and bacteria N uptake accounted for 10–60% of the total N uptake by phytoplankton.  相似文献   

12.
The Mississippi Valley-type (MVT) Pb–Zn ore district at Mežica is hosted by Middle to Upper Triassic platform carbonate rocks in the Northern Karavanke/Drau Range geotectonic units of the Eastern Alps, northeastern Slovenia. The mineralization at Mežica covers an area of 64 km2 with more than 350 orebodies and numerous galena and sphalerite occurrences, which formed epigenetically, both conformable and discordant to bedding. While knowledge on the style of mineralization has grown considerably, the origin of discordant mineralization is still debated. Sulfur stable isotope analyses of 149 sulfide samples from the different types of orebodies provide new insights on the genesis of these mineralizations and their relationship. Over the whole mining district, sphalerite and galena have δ 34 S values in the range of –24.7 to –1.5‰ VCDT (–13.5 ± 5.0‰) and –24.7 to –1.4‰ (–10.7 ± 5.9‰), respectively. These values are in the range of the main MVT deposits of the Drau Range. All sulfide δ 34 S values are negative within a broad range, with δ 34 S pyrite <δ 34 S sphalerite <δ 34 S galena for both conformable and discordant orebodies, indicating isotopically heterogeneous H2S in the ore-forming fluids and precipitation of the sulfides at thermodynamic disequilibrium. This clearly supports that the main sulfide sulfur originates from bacterially mediated reduction (BSR) of Middle to Upper Triassic seawater sulfate or evaporite sulfate. Thermochemical sulfate reduction (TSR) by organic compounds contributed a minor amount of 34S-enriched H2S to the ore fluid. The variations of δ 34 S values of galena and coarse-grained sphalerite at orefield scale are generally larger than the differences observed in single hand specimens. The progressively more negative δ 34 S values with time along the different sphalerite generations are consistent with mixing of different H2S sources, with a decreasing contribution of H2S from regional TSR, and an increase from a local H2S reservoir produced by BSR (i.e., sedimentary biogenic pyrite, organo-sulfur compounds). Galena in discordant ore (–11.9 to –1.7‰; –7.0 ± 2.7‰, n = 12) tends to be depleted in 34 S compared with conformable ore (–24.7 to –2.8‰, –11.7 ± 6.2‰, n = 39). A similar trend is observed from fine-crystalline sphalerite I to coarse open-space filling sphalerite II. Some variation of the sulfide δ 34 S values is attributed to the inherent variability of bacterial sulfate reduction, including metabolic recycling in a locally partially closed system and contribution of H2S from hydrolysis of biogenic pyrite and thermal cracking of organo-sulfur compounds. The results suggest that the conformable orebodies originated by mixing of hydrothermal saline metal-rich fluid with H2S-rich pore waters during late burial diagenesis, while the discordant orebodies formed by mobilization of the earlier conformable mineralization.  相似文献   

13.
2 study area was assessed with respect to its heavy-metal load on the basis of the current guideline values. The heavy-metal loads of the soils in the study area have ranges of <0.2–200 mg kg−1 for Cd, <10–30,000 mg kg−1 for Pb, 7–10,000 mg kg−1 for Cu and 50–55,000 mg kg−1 for Zn. Mobility of the heavy metals was determined by extraction at different pH values. The acid neutralisation capacity (ANCx) at these pH values was also determined to estimate the probability that the pH can drop to pH=x. The ANC values in the study area ranged from 6 to 3000 mmol H+ kg−1, from −33 to 800 mmol H+ kg−1 and from −74 to 160 mmol H+ kg−1 for ANC3.5, ANC5.0 and ANC6.2, respectively. Together with pedological data, the extraction experiments permit differentiation between soil units that have been placed in the same environmental hazard class on the basis of total heavy-metal loads. Received: 10 August 1998 · Accepted: 14 August 1999  相似文献   

14.
In this study rates of oxygen, ammonium (NH4 +), nitrate (NO3 ), nitrite (NO2 ), and nitrous oxide (N2O) fluxes, nitrogen (N) fixation, nitrification, and denitrification were compared between two intertidal sites for which there is an abundant global literature, muddy and sandy sediments, and two sites representing the rocky intertidal zone where biogeochemical processes have scarcely been investigated. In almost all sites oxygen production rates greatly exceeded oxygen consumption rates. During daylight, NH4 + and NO3 uptake rates together with ammonification could supply the different N requirements of the primary producer communities at all four sites; N assimilation by benthic or epilithic primary producers was the major process of dissolved inorganic nitrogen (DIN) removal; N fixation, nitrification, and denitrification were minor processes in the overall light DIN cycle. At night, distinct DIN cycling processes took place in the four environments, denitrification rates ranged from 9 ± 2 to 360 ± 30 μmol N2 m−2 h−1, accounting for 10–48% of the water column NO3 uptake; nitrification rates varied from 0 to 1712 ± 666 μmol NH4 + m−2 h−1. A conceptual model of N cycle dynamics showed major differences between intertidal sediment and rocky sites in terms of the mean rates of DIN net fluxes and the processes involved, with rocky biofilm showing generally higher fluxes. Of particular significance, the intertidal rocky biofilms released 10 times the amount of N2O produced in intertidal sediments (up to 17 ± 6 μmol N2O m−2 h−1), representing the highest N2O release rates ever recorded for marine systems. The biogeochemical contributions of intertidal rocky substrata to estuarine and coastal processes warrant future detailed investigation.  相似文献   

15.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

16.
This study examined freshwater discharge of dissolved organic matter (DOM) to the shallow Lavaca–Matagorda (LM) Bay estuarine system along the central Texas coast and investigated whether chromophoric DOM (CDOM) photochemical reactions have the potential to stimulate microbial activity within LM estuarine waters. Dissolved organic carbon (DOC) concentrations ranged from 3 to 10 mg C l−1 and CDOM levels (reported as a 305) ranged from 8 to 77 m−1 during April and July, 2007, when the LM system was experiencing very high freshwater inputs. DOC and CDOM levels were well-correlated with salinities > 3, but exhibited considerable variability at salinities < 3. CDOM photobleaching rates (i.e., decrease in a 305 resulting from exposure to solar radiation) for estuarine samples ranged from 0.014 to 0.021 h−1, corresponding to photobleaching half-lives of 33–50 h. Our data indicate when Matagorda Bay waters photobleach; dissolved organic carbon utilization is enhanced perhaps due to enhanced microbial respiration of biologically labile photoproducts (BLPs). Net ecosystem metabolism calculations indicate that most of the LM system was net heterotrophic during our study. We estimate that BLP formation could support up to 20% of the daily microbial respiratory C demand in LM surface waters and combined with direct photochemical oxygen consumption could have an important influence on O2 cycles in the LM system.  相似文献   

17.
We measured fluxes of NH4+ and NO3 and δ15N of NH4+, sediment, and porewater NH4+ from incubated sediment cores along a nitrate gradient and in different seasons from Childs River, MA. NH4+ flux was low at the downstream site with the lowest concentration of organic matter (high salinity) but otherwise did not differ along the estuary. The δ15N of regenerated NH4+ ranged from +6.1‰ to +15.3‰ but did not vary significantly with season or salinity; the mean for the entire estuary was +10.4 ± 0.5‰. Based on differences between the δ15N of regenerated NH4+ and sediment, and expected isotopic fractionation due to remineralization, we concluded that nitrification occurred after remineralization of NH4+. Differences between the δ15N of regenerated NH4+ and the δ15N of porewater NH4+ provided further evidence of nitrification. We estimated that 11% to 48% of remineralized NH4+ underwent coupled nitrification–denitrification before release into the water column. In spite of losses to denitrification, NH4+ flux released 1.4 mol N m−2 year−1 to the water column and could provide 42% of phytoplankton nitrogen requirements.  相似文献   

18.
 The hitherto unknown low-temperature heat capacity of nickel chromite (NiCr2O4) was measured between 8 and 381 K using adiabatic calorimetry, and some thermochemical functions [CP(T), S(T), S°298, H(T)−H(0)] were derived from the results. The standard entropy (S°298=140.0 ± 0.3 J mol−1 K−1) for nickel chromite was calculated from the results. Our calorimetric measurements indicate three major anomalies in the heat-capacity curve at temperatures between 8 and 381 K. A short literature review indicates that two of these anomalies can be accounted for, whereas an anomaly peaking at 29 K has not been reported previously.  相似文献   

19.
A review of published and newly measured densities for 40 hydrous silicate glasses indicates that the room-temperature partial molar volume of water is 12.0 ± 0.5 cm3/mol. This value holds for simple or mineral compositions as well as for complex natural glasses, from rhyolite to tephrite compositions, prepared up to 10–20 kbar pressures and containing up to 7 wt% H2O. This volume does not vary either with the molar volume of the water-free silicate phase, with its degree of polymerization or with water speciation. Over a wide range of compositions, this constant value implies that the volume change for the reaction between hydroxyl ions and molecular water is zero and that, at least in glasses, speciation does not depend on pressure. Consistent with data from Ochs and Lange (1997, 1999), systematics in volume expansion for SiO2–M2O systems (M=H, Li, Na, K) suggests that the partial molar thermal expansion coefficient of H2O is about 4 × 10−5 K−1 in silicate glasses. Received: 30 June 1999 / Accepted: 5 November 1999  相似文献   

20.
The Zhangye Basin, located in arid northwest China, is an important agricultural and industrial center. In recent years rapid development has created an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. Detailed knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical investigation was conducted in the Zhangye Basin. Types of shallow groundwater in the Zhangye Basin were found to be HCO3 , HCO3 –SO4 2−, SO4 2−–HCO3 , SO4 2−–Cl, Cl–SO4 2− and Cl. The deep aquifer groundwater type was found to be HCO3–SO42− throughout the entire area. Ionic ratio and saturation index calculations suggest that silicate rock weathering and evaporation deposition are the main processes that determine the ionic composition in the study area. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. In the study area, the compositions of the stable isotopes δ18O and δD in groundwater samples were found to range from −4.00 to −9.28‰ and from −34.0 to −65.0‰, respectively. These values indicate that precipitation is the main recharge source for the groundwater system; some local values indicate high levels of evaporation. Tritium analysis was used to estimate the ages of the different groundwaters; the tritium values of the groundwater samples varied from 3.13 to 36.62 TU. The age of the groundwater at depths of less than 30 m is about 5–10 years. The age of the groundwater at depths of 30–50 m is about 10–23 years. The age of the groundwater at depths of 50–100 m is about 12–29 years. For groundwater samples at depths of greater than 100 m, the renewal time is about 40 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号