首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

2.
Few studies concerning tide-restricted and restoring salt marshes emphasize fishes and decapod crustaceans (nekton) despite their ecological significance. This study quantifies nekton utilization of three New England salt marshes under tide-restricted and restoring conditions (Hatches Harbor, Massachusetts; Sachuest Point and Galilee, Rhode Island). The degree of tidal restriction differed among marshes allowing for an examination of nekton utilization patterns along a gradient of tidal restriction and subsequent restoration. Based on sampling in shallow subtidal creeks and pools, nekton density and richness were significantly lower in the restricted marsh compared to the unrestricted marsh only at the most tide-restricted site (Sachuest Point). The dissimilarity in community composition between the unrestricted and restricted marsh sites increased with more pronounced tidal restriction. The increase in nekton density resulting from tidal restoration was positively related to the increase in tidal range. Species richness only increased with restoration at the most tide-restricted site; no significant change was observed at the other two sites. These patterns suggest that only severe tidal restrictions significantly reduce the habitat value of New England salt marshes for shallow subtidal nekton. This study suggests that the greatest responses by nekton, and the most dramatic shift towards a more natural nekton assemblage, will occur with restoration of severely restricted salt marshes.  相似文献   

3.
A primary goal of many coastal restoration programs is to increase nekton habitat in terms of both quantity and quality. Using shallow water ponds rehabilitated with a technique called marsh terracing, we examined the quality of nekton habitat created, using and comparing several metrics including nekton density and diversity, functional group composition, and weight-length relationships as indirect measures of habitat quality. We examined three paired terraced and unterraced marsh ponds in southwest Louisiana. Nekton, submerged aquatic vegetation (SAV), and soil and water quality variables were sampled bimonthly from April 2004 through April 2005 at four subtidal habitat types: terraced nearshore, terraced open water, unterraced nearshore, and unterraced open water. Results indicate that terraced ponds had increased the habitat value of degrading unterraced ponds over open water areas for estuarine nekton; nekton density and richness were similar between terraced and unterraced nearshore habitat types, but greater at all nearshore as compared to open water sites. Analysis of the distribution of nekton functional groups and weight:length ratios indicates the terraced and unterraced pond habitats were not functioning similarly: distribution of nekton functional groups differed significantly between habitat types with greater percentages of benthic-oriented species at unterraced open water habitats and higher percentage of open water species in terraced ponds as compared to unterraced ponds, and two of the six numerically dominant fish species had greater weight-length relationships in unterraced ponds as compared to terraced ponds. This lack of functional equivalency may be attributed to environmental differences between terraced and unterraced ponds such as water depth or SAV biomass, or the relatively young age of the terraces studied, which may not have allowed for the development of some critical habitat variables, such as soil organic matter that was found to be significantly lower in terraced versus unterraced ponds (p < 0.05). To properly assess the ecological equivalency of restored or rehabilitated sites for nekton requires that we move beyond measures of nekton density, biomass, and diversity and incorporate measures of functional equivalency, including habitat measures.  相似文献   

4.
In Grand Bay National Estuarine Research Reserve (Grand Bay NERR), Mississippi, we used quantitative drop sampling in three common shallow estuarine habitats—low profile oyster reef (oyster), vegetated marsh edge (VME), and nonvegetated bottom (NVB)—to address the dearth in research comparing nekton utilization of oyster relative to adjacent habitats. The three habitats were sampled at two distinct marsh complexes within Grand Bay NERR. We collected a total of 633 individual fishes representing 41 taxa in 22 families. The most diverse fish family was Gobiidae (seven species) followed by Blennidae and Poeciliidae (three species each). We collected a total of 2,734 invertebrates representing 24 taxa in 11 families. The most diverse invertebrate family was Xanthidae (six species) followed by Palaemonidae (five species). We used ordination techniques to examine variation in species relative abundance among habitats, seasons, and sampling areas, and to identify environmental gradients correlated with species relative abundances. Our resulted indicated that oyster provided a similarly complex and important function as the adjacent VME. We documented three basic trends related to the importance of oyster and VME habitats: 1) Oyster and VME provide habitat for significantly more species relative to NVB, 2) Oyster and VME provide habitat for rare species, and 3) Several species collected across multiple habitats occurred at higher abundances in oyster or VME habitat. We also found that salinity, temperature, and depth were associated with seasonal and spatial shifts in nekton communities. Lastly, we found that the relative location of the two marsh complexes we studied within the context of the whole estuary may also explain some of the temporal and spatial differences in communities. We conclude that oyster habitat supported a temporally diverse and spatially distinct nekton community and deserves further attention in research and estuarine conservation efforts.  相似文献   

5.
Fish numbers and biomass in a mitigation salt marsh, Humboldt Bay, California, were examined from July 1981 to October 1982 and were compared with a nearby established marsh to determine whether the restored marsh provided adequate mitigation for habitat lost due to construction of a nearby marina. The use by fish of channels adjacent to the two marshes and the channel at the Woodley Island Marina construction site, for which mitigation was required, were also compared. The mitigation marsh, adjacent to Freshwater Slough channel, was 5.2 km from the marina site. Fishes were sampled by otter trawl, ichthyoplankton net, fixed channel nets, drop traps, and beach seines. Thirty-one fish species and two crab species were collected. Wide ranges in seasonal salinities and water temperatures, and differences in marsh elevation influenced fish use of the mitigation marsh area. The intertidal area of the mitigation marsh, dominated by euryhaline sticklebacks and topsmelts, did not replace intertidal and subtidal habitat lost by marina construction, which had more stable salinities and water temperatures and was used extensively by juvenile English sole.  相似文献   

6.
We determined the distribution of macroalgae in Hog Island Bay, a shallow coastal lagoon in Virginia, USA, seasonally at 12 sites from 1998 to 2000 and at 3 representative sites from 2000 to 2002. We analyzed macroalgal biomass, taxonomic richness, and abundance of two non-native species, the cryptic invaderGracilaria vermiculophylla and the conspicuousCodium fragile, with respect to season, location (mainland, mid lagoon, barrier island sites), and elevation (intertidal, subtidal). Taxonomic richness, total algal biomass, and nonnative biomass peaked in the summer months when temperature and light availability were highest. A few stress tolerant and ephemeral algae dominated the algal assemblage.G. vermiculophylla constituted 74% of the entire algal biomass, was the most abundant alga in all seasons, locations, and elevation levels, and was positively correlated with taxonomic richness and abundance of filamentous species.Ulva curvata, Bryopsis plumosa, andC. fragile accounted for an additional 16% of the algal biomass. There are distinct habitats in Hog Island Bay that can be classified into low diversity-low biomass regions near the mainland and barrier islands and high diversity-high biomass regions in the open mid lagoon, where abundant shells for attachment and intermediate levels of water column nutrients and turbidity likely create better growth conditions. Taxonomic richness and biomass were higher in subtidal than intertidal zones, presumably due to lower desiccation stress. This study provides an example of how a single invasive species can dominate an entire assemblage, both in terms of biomass (being most abundant in all seasons, locations, and tidal levels) and species richness (correlating positively with epiphytic filamentous taxa). By adding hard-substratum structural complexity to a relatively homogenous soft-substratum system,G. vermiculophylla increases substratum availability for attachment and entanglement of other algal species and enhances local diversity. Without widespread and abundantG. vermiculophylla, taxa likePolysiphonia, Ceramium, Bryopsis, Ectocarpus, andChampia would likely be much less common. This study also highlights the importance of using DNA analysis of voucher specimens in monitoring programs to accurately identify cryptic invaders.  相似文献   

7.
The intertidal marsh community comprises both benthic and natant faunal components. The benthic components are primarily small invertebrates residing within or on the soft sediments of the vegetated marsh surface. The natant components include larger, fully aquatic organisms (e.g., fish and shrimp) that inhabit the shallow waters adjacent to the marsh at low tide but interact with the benthic components of the community when the marsh is tidally inundated. In this structurally complex and often expansive intertidal environment, patterns of invertebrate distribution and abundance are not apparent to the casual observer. Benthic core samples taken along an intertidal marsh transect on Sapelo Island, Georgia, USA show that many of the inconspicuous infaunal organisms, which numerically dominate the macrofaunal elements of this soft-substrate community, exhibit zonal distribution patterns along a tidal gradient. Patterns of invertebrate distribution in the intertidal salt marsh are often attributed to the activities of aquatic predators. The results of most predator exclusion experiments have left little doubt that predation/disturbance can be an important determinant of invertebrate abundance in soft-substrate communities; but a growing number of experiments, in both freshwater and marine environments, have produced results that apparently conflict with this, general tenet. Dismissed by some as “failed” experiments, these investigations have exposed our lack of knowledge about the effects of specific predators and the importance of complex interactions which involve more than two trophic levels. Although the importance of predation has been stressed in many recent experimental investigations, there are many other factors that, alone or in combination, may also influence the structure of salt marsh invertebrate assemblages. Included among these are: (1) various density-dependent processes (e.g., adult-larval interactions, agonistic behavior, interspecific competition), (2) selective larval settlement or mortality, (3) the influence of physical factors expressed through habitat preferences, and (4) unpredictable or cyclic physical disturbances. Many questions concerning the spatial and temporal patterns of invertebrate distribution and abundance in the salt marsh are unresolved and remain as challenges to our understanding of soft-substrate community dynamics.  相似文献   

8.
Three factors affecting the structure of nekton communities 9fishes and decapod crustaceans) in eelgrass beds were identified and evaluated: contiguous shoreline type, distance from shore, and macrophyte biomass. Throw traps (1 m2) were used to sample eelgrass nekton at seven locations in Great South Bay (New York, U.S.) along Fire Island National Seashore from May through October 1995. Abundances ofGobiosoma ginsburgi, Apeltes quadracus, andOpsanus tau were significantly higher in eelgrass beds adjacent to salt marshes.Menidia menidia, Syngnathus fuscus, Pseudopleuronectes americanus, andPalaemonetes pugio were significantly more abundant in eelgrass adjacent to beaches. Regression analyses indicated thatSyngnathus fuscus, Pseudopleuronectes americanus, andAnguilla rostrata abundances were positively related to eelgrass biomass, andApeltes quadracus andGobiosoma ginsburgi abundances were highest at moderate levels of macroalgae biomass. The distance of an eelgrass bed from shore was also important. Species generally associated with salt marshes (Fundulus heteroclitus, Cyprinodon variegatus, Lucania parva, andPalaemonetes pugio) were more abundant in eelgrass near the marsh shore. Abundances ofApeltes quadracus, Syngnathus fuscus, Menidia menidia, Hippolyte pleuracanthus, andCrangon septemspinosa increased with distance from the shoreline. Shoreline type, distance from shore, and macrophyte biomass appear to affect the abundance and distribution of some nekton species. The effect of shoreline type may be related to the distribution of macrophyte biomass; the biomasses of eelgrass and macroalgae were significantly higher along beach and marsh shorelines, respectively. Explaining within-habitat variability and identifying microhabitat preferences for nekton will aid in the proper design of future studies and habitat restoration efforts.  相似文献   

9.
Subsidence and erosion of intertidal salt marsh at Galveston Island State Park, Texas, created new areas of subtidal habitat that were colonized by seagrasses begining in 1999. We quantified and compared habitat characteristics and nekton densities in monospecific beds of stargrassHalophila engelmanni and shoalgrassHalodule wrightii as well as adjacent nonvegetated substrates. We collected 10 replicates per habitat type during April, July, October, and December 2001. Most habitat characteristics varied with season. Water temperature, salinity, and dissolved oxygen were similar among habitat types. Turbidity and depth were greatest inH. engelmanni beds and least inH. wrightii beds.H. engelmanni exhibited shorter leaves and higher shoot density and biomass core−1 thanH. wrightii. Densities of almost all dominant species of nekton (fishes and decapods) were seasonally variable, all were higher in seagrass habitats than in nonvegetated habitats, and most were higher in one seagrass species than the other. Naked gobyGobiosoma bosc, code gobyGobiosoma robustum, bigclaw snapping shrimpAlpheus heterochaelis, and blue crabCallinectes sapidus, were most abundant inH. engelmanni. Brown shrimpFarfantepenaeus aztecus, brackish grass shrimpPalaemonetes intermedius, and daggerblade grass shrimpPalaemonetes pugio were most abundant inH. wrightii. PinfishLagodon rhomboides and pink shrimFarfantepenaeus duorarum were equally abundant in either seagrass. Most dominant nekton varied in size by month, but only two (L. rhomboides andC. sapidus) exhibited habitat-related differences in size. Nekton densities in these new seagrass habitats equaled or exceeded densities associated with historical and current intertidal smooth cordgrassSpartina alterniflora marsh. Continued seagrass expansion and persistence should ensure ecosystem productivity in spite of habitat change.  相似文献   

10.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

11.
Variability in early life stages of species that are permanent residents of the estuarine nekton is poorly understood, especially in systems with extensive areas of emergent vegetation (e.g., salt marshes and mangroves). Sampling small mobile nekton in these shallow intertidal habitats presents a difficult methodological challenge. Simulated aquatic microhabitats (SAMs) were used to collect the early life stages of resident nekton that remained on the emergent marsh surface after it was exposed by the tide and could not be adequately sampled by traditional methods. Where the intertidal is a prominent areal component of the estuary, a large portion of young nekton could be overlooked using other common survey methods (e.g., plankton tows or block nets). Populations of young fishes and natant crustaceans were monitored for a year at 3-d to 6-d intervals from both low and high intertidal elevations within each of two marsh sites on Sapelo Island, Georgia, USA. Three species accounted for >99% of the 41,023 individuals collected. These were the killifishesFundulus heteroclitus (57.0%) andF. luciae (4.0%), and the daggerblade grass shrimp,Palaemonetes pugio (38.4%). YoungF. heteroclitus were used in field enclosure experiments to relate abundance data to actual areal densities. Average annual estimated density of young nekton on the surface of the intertidal marsh at low tide was 7.2 individuals m?2. Early life stages of estuarine resident species, particularly those with demersal young, are not affected by the same physical processes influencing larval supply and recruitment variability in marine-spawned species. In salt marshes, biotic factors (e.g., adult reproductive activity, predation, and food limitation) may be more important as proximate causes of variation during the early life histories of resident nekton.  相似文献   

12.
Subtidal accumulations of oyster shell have been largely overlooked as essential habitat for estuarine nekton. In southeastern U.S. estuaries, where oyster reef development is mostly confined to the intertidal zone, eastern oyster (Crassostrea virginica) shell covered bottoms are often the only significant source of hard subtidal structure. We characterized and quantified nekton use of submerged shell rubble bottoms, and compared it to use of intertidal reefs and other subtidal bottoms in the North Inlet estuary, South Carolina. Replicate trays (0.8 m2) filled with shell rubble were deployed in shallow salt marsh creeks, and were retrieved after soak times of 1 to 25 days from May 1998 to March 2000. Thirty six species of fishes, representing 21 families, were identified from the 455 tray collections. Water temperature, salinity, soak time and the presence of a shell substrate all affected the catch of fishes in the trays. Catches during the warmer months were two to five times greater than those during the winter. Fishes were present in 98% of the trays with an overall average of 5.7 fish m?2. The assemblage was numerically dominated by small resident species including naked goby (Gobiosoma bose), oyster toadfish (Opsanus tau), and crested blenny (Hypleurochilus geminatus). Transient species accounted for 23% of all individuals and 62% of the total biomass due to the presence of relatively large sheepshead (Archosargus probatocephalus) and black sea bass (Centropristis striata). Both the transient and resident species displayed distinct periods of recruitment and rapid growth from April to October. Lower abundances of juvenile gobies and blennies during 1998 were attributed to long periods of depressed salinity caused by high rainfall associated with El Niño conditions in spring. Crabs and shrimps, which were often more abundant than the fishes, accounted for comparable biomass in the tray collections. In comparisons of subtidal tray and trawl catches, trays yielded 10 to 1,000 fold higher densities of some demersal fish groups. Comparisons of intertidal and subtidal gear catches indicated that many species remain in the subtidal shell bottom at all stages of the tide. This study suggests that subtidal shell bottom may be essential fish habitat for juvenile seabass, groupers, and snappers and that it may be the primary habitat for a diverse assemblage of ecologically important resident fishes and crustaceans. Given the high levels of nekton use and the areal extent of oyster shell bottoms in eastern U.S. and Gulf estuaries, increased attention to protection and restoration of these areas appears justified.  相似文献   

13.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

14.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

15.
We examined the diets of Gulf killifish,Fundulus grandis Baird and Girard, collected monthly from March through July 1988 with unbaited minnow traps during two sampling periods: (1) on flood tides before they reached the marsh surface, and (2) on ebb tides as they left the marsh. Thirty-five prey taxa, plant parts, and detritus were identified from the stomach contents of 110 Gulf killifish (mean SL = 55 mm, range = 30?82 mm). Fiddler crabs,Uca longisignalis Salmon and Atsaides; amphipods, mostlyCorophium louisianum Shoemaker; tanaidaceans,Hargeria rapax (Harger); and hydrobiids,Littoridinops palustris Thompson, were their most important prey. Killifish diets differed both quantitatively and qualitatively relative to the habitat in which they were feeding. Fiddler crabs and polychaetes were consumed more frequently and in greater numbers in the intertidal zone, whereas more amphipods were eaten by killifish feeding in subtidal and low intertidal areas. Gulf killifish consumed a greater volume of food when they had access to the marsh surface than when they were confined to subtidal areas.  相似文献   

16.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

17.
Salt marsh intertidal creeks are important habitats for dozens of species of nekton, but few studies have attempted to quantify patterns of tidal movement. We used the sweep flume, a new sampling device, to investigate relationships between depth and movements of nekton inside the mouths of intertidal creeks. Sweep flumes located in three creek beds were used to collect nekton at 10 cm increments (10–100 cm of water depth) during flood and ebb tides in the North Inlet, South Carolina, salt marsh. Of the 37 taxa collected, 13 comprised>99.5% of the total catch and were the focus of the analysis. A nonlinear mixed modeling procedure was used to determine, the depth at which each major taxon reached peak abundance during flood tides. With high degrees of spatial and temporal consistency, resident taxa entered early on the rpsing tide and transient taxa entered during mid to late tide. Depths of peak migrations varied among taxa and were consistent between creeks, days (within months), and years. As summer progressed, depths of peak migration increased for young-of-the-yearLeiostomus xanthurus, Lagodon rhomboides, Mugil curema, Eucinostomus argenteus, andLitopenaeus setiferus as their median sizes increased. Within tides, depths of migration increased as a function of size forL. xanthurus andM. curema. Comparisons between flood and ebb tides indicated that most taxa exited the creeks at approximately the same depths at which they entered. Relationships between major taxa pairs suggested that biotic interactions may have contributed to the structure of the migrations observed in this study. Our results are the first to demonstrate quantitatively that the migrations of nektonic taxa into intertidal creeks are structured and related to depth.  相似文献   

18.
Long-term monitoring studies are needed to understand changes in ecosystem status when restoration measures are implemented. A long-term data series (1996–2007) of the Tagus estuary (Portugal) intertidal and subtidal benthic communities was collected in a degraded area where mitigation measures were implemented. Multivariate analysis was used to analyze spatial and temporal patterns in benthic community composition and trends in five benthic community metrics (i.e., taxonomic richness, density, biomass, Shannon–Wiener diversity and the AMBI index) were also examined. The results revealed a clear separation between intertidal and subtidal assemblages, although they had 50% of taxa in common, including the most abundant. Significant positive trends were found for all metrics showing that both intertidal and subtidal communities responded to the restoration measures implemented. Nevertheless, biotic indices need some adaptation before being universally applied to intertidal and subtidal habitats.  相似文献   

19.
Development and validation of an estuarine biotic integrity index   总被引:1,自引:0,他引:1  
We tested hypotheses about how estuarine fish assemblages respond to habitat degradation and then integrated these responses into an overall index, the Estuarine Biotic Integrity Index (EBI), which summarized observed changes. Fish assemblages (based on trawl catches) and habitat quality were measured monthly or biweekly at nine sites in two estuaries from March 1988 to June 1990. Submerged aquatic vegetation habitats were classified as low or medium quality based on year-round measurements of chemical and physical characteristics (phytoplankton blooms; macroalgae; dissolved oxygen; nutrients; dredged channels). We tested 15 metrics and selected 8 for inclusion in the EBI: total number of species, dominance, fish abundance (number or biomass), number of nursery species, number of estuarine spawning species, number of resident species, proportion of benthic-associated fishes, and proportion abnormal or diseased. Fish assemblages in low-quality sites had lower number of species, density, biomass, and dominance compared with medium-quality sites. Fish abundance peaked in July and August, and was lowest in January to March. The seasonal cycle in low-quality sites was damped compared with medium-quality sites. Abundances of fishes using estuaries as a spawning and nursery area and of benthic species were lower in low-quality sites compared to medium-quality sites. The individual metrics and the overall index correlated with habitat degradation. The EBI based on biomass did not do better than the EBI based on number, indicating that the extra effort to obtain biomass may not be warranted. We suggest the EBI is a useful indicator of estuarine ecosystem status because it reflects the relationship between anthropogenic alterations in estuarine ecosystems and the status of higher trophic levels.  相似文献   

20.
An assessment of developing eutrophic conditions in small temperate lagoons along the coast of Rhode Island suggests that in such shallow, macrophyte based systems the response to nutrient enrichment differs from that described for plankton based systems. The nitrogen loadings per unit area of the salt ponds are 240–770 mmol N per m2 per year. Instead of the high nutrient concentrations, increased phytoplankton biomass and turbidity, leading to eventual loss of benthic macrophytes described for such systems as the Chesapeake, Patuxent and Appalachicola Bay, nutrient enrichment of the Rhode Island lagoons has led to increased growth of marine macroalgae. The increased macroalgal growth appears to alter the benthic habitat and a shift from a grazing to detrital food chain appears to be impacting important shellfisheries. As more extensive areas of organic sediments develop, geochemical cycling changes, resulting in higher rates of nitrogen remineralization and accelerated eutrophication. The major sources of nitrogen inputs to the salt ponds have been identified and a series of management initiatives have been designed to limit inputs from present and potential development within the watersheds of the lagoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号