首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Digital mobile mapping, the method that integrates digital imaging with direct geo-referencing, has developed rapidly over the past 15 years. The Kalman filter (KF) is considered an optimal estimation tool for real-time INS/GPS integrated kinematic positioning and orientation determination. However, the accuracy requirements of general mobile mapping applications cannot be easily achieved even when using the KF scheme. Therefore, this study proposes an intelligent scheme combining ANN and RTS backward smoother to overcome the limitations of KF and to enhance the overall accuracy of attitude determination for tactical grade and MEMS INS/GPS integrated systems.
Yun-Wen Huang (Corresponding author)Email:
  相似文献   

2.
A method is presented for estimating the roll and pitch attitude of a small-scaled unmanned helicopter based on the velocity measurements of the global positioning system (GPS). The small-scaled helicopter is a radio controlled (RC) model which is readily available and affordable for academic laboratories as a research platform. Only one single antenna GPS receiver is equipped on the RC helicopter to acquire the velocity measurements needed for the attitude estimation. The velocity information is recorded by the onboard computer for post-processing. An attitude and heading reference system (AHRS) is used to provide the reference attitudes. The required angular rates and heading for this study are also given by the gyroscopes and compass of the AHRS for the sake of system’s simplification. The Kalman filter is applied to estimate the helicopter’s accelerations by using the GPS velocity measurements. The estimated accelerations form the fundamental elements of synthesizing the pseudo-roll and the pseudo-pitch. With some legitimate simplifications and assumptions, the relation between the helicopter’s attitudes and the accelerations estimated from the GPS velocity measurements can be developed. Furthermore, to enhance the accuracy of the pseudo-attitudes, the angular rates acquired from the gyroscopes are incorporated into the estimation algorithm of pseudo-attitudes by using a complementary filter.
Fei-Bin HsiaoEmail:
  相似文献   

3.
Kalman-filter-based GPS clock estimation for near real-time positioning   总被引:11,自引:4,他引:7  
In this article, an algorithm for clock offset estimation of the GPS satellites is presented. The algorithm is based on a Kalman-filter and processes undifferenced code and carrier-phase measurements of a global tracking network. The clock offset and drift of the satellite clocks are estimated along with tracking station clock offsets, tropospheric zenith path delay and carrier-phase ambiguities. The article provides a brief overview of already existing near-real-time and real-time clock products. The filter algorithm and data processing scheme is presented. Finally, the accuracy of the orbit and clock product is assessed with a precise orbit determination of the MetOp satellite and compared to results gained with other real-time products.
André HauschildEmail:
  相似文献   

4.
Since the assumption of all stations tracking the same satellites with identical weights was previously employed by Shen and Xu (GPS Solut 12:99–108, 2008) to derive the simplified GNSS single- and double-differenced equivalent equations, this supplementary paper expands these simplified equations in the case of each station tracking different satellites with elevation-dependent weights. Numerical experiments are performed to demonstrate the computational efficiency of the simplified equivalent algorithm relative to the traditional method in various scenarios of multi-baseline solutions with tracking different satellites. The fast computational speed of the simplified equivalent algorithm will potentially benefit the local, regional and even global GNSS multi-baseline solutions as well as the combined GNSS application.
Guochang XuEmail:
  相似文献   

5.
A constrained LAMBDA method for GPS attitude determination   总被引:4,自引:0,他引:4  
An improved method to obtain fixed integer ambiguity in GPS attitude determination is presented. Known conditions are utilized as constraints to acquire attitude information when the float solution and its variance–covariance matrix are not accurate enough. The searching ellipsoidal region is first expanded to compensate for errors caused by the inaccurate float solution. Then the constraints are used to shrink the region to a proper size, which maintains the true integer ambiguity. Experimental results demonstrate that this scheme gives a fast search time and a higher success rate in determining the fixed integer ambiguity than the unconstrained method. The accuracy of attitude angles is also improved.
Bo WangEmail:
  相似文献   

6.
Show me the code: spatial analysis and open source   总被引:3,自引:1,他引:2  
This paper considers the intersection of academic spatial analysis with the open source revolution. Its basic premise is that the potential for cross-fertilization between the two is rich, yet some misperceptions about these two communities pose challenges to realizing these opportunities. The paper provides a primer on the open source movement for academicians with an eye towards correcting these misperceptions. It identifies a number of ways in which increased adoption of open source practices in spatial analysis can enhance the development of the next generation of tools and the wider practice of scientific research and education.
Sergio J. ReyEmail:
  相似文献   

7.
The majority of navigation satellites receivers operate on a single frequency and experience a positioning error due to the ionospheric delay. This can be compensated for using a variety of approaches that are compared in this paper. The study focuses on the last solar maximum. A 4D tomographic imaging technique is used to map the ionospheric electron density over the European region during 2002 and 2003. The electron density maps are then used to calculate the excess propagation delay on the L1 frequency experienced by GPS receivers at selected locations across Europe. The excess delay is applied to correct the pseudo-range single frequency observations at each location and the improvements to the resulting positioning are calculated. The real-time tomographic technique is shown to give navigation solutions that are better than empirical modelling methods and approach the accuracy of the full dual-frequency solution. The improvements in positioning accuracy vary from day to day depending on ionospheric conditions but can be up to 25 m during mid-day during these solar maximum conditions at European mid-latitudes.
Damien J. AllainEmail:
  相似文献   

8.
Carrier phase-based integrity monitoring for high-accuracy positioning   总被引:4,自引:3,他引:1  
Pseudorange-based integrity monitoring, for example receiver autonomous integrity monitoring (RAIM), has been investigated for many years and is used in various applications such as non-precision approach phase of flight. However, for high-accuracy applications, carrier phase-based RAIM (CRAIM), an extension of pseudorange-based RAIM (PRAIM) must be used. Existing CRAIM algorithms are a direct extension of PRAIM in which the carrier phase ambiguities are estimated together with the estimation of the position solution. The main issues with the existing algorithms are reliability and robustness, which are dominated by the correctness of the ambiguity resolution, ambiguity validation and error sources such as multipath, cycle slips and noise correlation. This paper proposes a new carrier phase-based integrity monitoring algorithm for high-accuracy positioning, using a Kalman filter. The ambiguities are estimated together with other states in the Kalman filter. The double differenced pseudorange, widelane and carrier phase observations are used as measurements in the Kalman filter. This configuration makes the positioning solution both robust and reliable. The integrity monitoring is based on a number of test statistics and error propagation for the determination of the protection levels. The measurement noise and covariance matrices in the Kalman filter are used to account for the correlation due to differencing of measurements and in the construction of the test statistics. The coefficient used to project the test statistic to the position domain is derived and the synthesis of correlated noise errors is used to determine the protection level. Results from four cases based on limited real data injected with simulated cycle slips show that residual cycle slips have a negative impact on positioning accuracy and that the integrity monitoring algorithm proposed can be effective in detecting and isolating such occurrences if their effects violate the integrity requirements. The CRAIM algorithm proposed is suitable for use within Kalman filter-based integrated navigation systems.
Shaojun FengEmail:
  相似文献   

9.
Antenna changes at GNSS reference stations frequently produce discontinuities in the coordinate time series. These apparent position shifts are mainly caused by changes of carrier-phase multipath effects and different errors in the antenna phase center corrections. A monitoring method was developed and successfully tested, which requires additional GNSS observations from a local, temporary reference station. Changes of carrier-phase measurement errors due to the antenna change are determined and stored in L1 and L2 phase maps. These phase maps provide corrections to be applied either to the observation data obtained before the antenna change or to the observation data obtained after the antenna change. The observation corrections are able to remove coordinate discontinuities independent of the selected coordinate estimation algorithm.
Lambert WanningerEmail:
  相似文献   

10.
This study adopts the Chiu-fen-erh-shan landslide as a case study for incorporating comprehensive accelerograph and global positioning system (GPS) data to determine the best-fit acceleration data for analyzing a rock avalanche. Previous investigations indicate that the distance from an accelerograph to a landslide site is crucial to determining the best-fit acceleration data to use in conducting a seismic analysis. Unfortunately, the Chiu-fen-erh-shan landslide and its nearest accelerograph station are located in different geological zones. Thus, GPS data were compared to the displacements derived from the accelerograms of nearby monitoring stations to help select the best accelerograph data. This emphasizes that a high density distribution of accelerographs and GPS installations are essential to acquire the best data for the seismic analysis, especially in complex geological zones. After applying the best-fit accelerogram to Newmark’s sliding model and an empirical displacement attenuation formula to back-calculate the shear strength parameters of the sliding surface, a cohesion of 0 kPa and friction angle of the sliding surface of 24.8° were found for this landslide.
Jian-Hong WuEmail: Email:
  相似文献   

11.
A data archive of GPS navigation messages   总被引:2,自引:1,他引:1  
Since 18 June 2007 navigation data messages transmitted by the GPS constellation are recorded by five receivers within GeoForschungsZentrum’s global groundstation network. We describe the recording, processing, validation, analysis and archiving of the navigation data. During the 197 days between 18 June 2007 and 31 December 2007 a total of 125,723,666 subframes were collected. By taking into consideration that the same data set frequently is observed by two or more receivers concurrently, 65,153,955 unique subframes could be extracted from the observations. With an estimated 88,099,200 subframes transmitted by the constellation during this time period a data yield of about 74% was achieved. Simulation studies suggest that with two additional GPS receivers, which are scheduled for addition to the network in 2008, about 95% of the transmitted subframes will be retrieved. The message data archive is open to the scientific community for non-commercial purposes and may be accessed through GFZ’s Information System and Data Center ().
G. BeyerleEmail:
  相似文献   

12.
Separate space- or time-lags have been considered regularly in data analyses; as space–time models are more recently being studied extensively in data analytic fashion, joint estimation of both lags has to be considered explicitly. This paper addresses this issue, taking into special consideration parametric parsimony together with specification richness; use of the bivariate Poisson frequency distribution is advocated and applied to an empirical case. The relation of this approach to random effects specifications is investigated. Data for Belgian regional products constitute the empirical case study.
Daniel A. GriffithEmail:
  相似文献   

13.
In this paper a MATLAB toolbox for determining the attitude of a rigid platform by means of multiple non-dedicated antennas using global positioning system is presented. The programs embedded in this toolbox cover the RINEX data analysis, single point positioning, differential positioning, coordinate conversion, attitude determination, and other auxiliary functions. After forming the baselines through double-differenced (carrier phase smoothed) code observables, the attitude parameters are obtained by applying the direct attitude computation and the least squares attitude estimation. The theoretical background is summarized, and some hints regarding the software implementation are given in the paper. Moreover, improvements yielding an expanded functionality are proposed.
Zhen DaiEmail:
  相似文献   

14.
In Global Navigation Satellite System (GNSS) positioning, the receiver measures the pseudorange with respect to each observable navigation satellite and determines the position and clock bias. In addition to the GPS, several other navigation satellite constellations including Glonass, Galileo and Compass can/will also be used to provide positioning, navigation, and timing information. The paper is concerned with the solvability of the navigation problem when the receiver attempts to process measurements from different constellations. As two different constellations may not be time-synchronized, the navigation problem involves the determination of position of the receiver and clock bias with respect to each constellation. The paper describes an analytic approach to account for the two-constellation navigation problem with three measurements from one constellation and two measurements from another constellation. It is shown that the two-constellation GNSS navigation problem becomes the solving of a set of two simultaneous quadratic equations or, equivalently, a quartic equation. Furthermore, the zero-crossover of the leading coefficient and the sign of the discriminant of the quartic equation are shown to play a significant role in governing the solvability, i.e., the existence and uniqueness of the navigation solutions.
Jyh-Ching JuangEmail:
  相似文献   

15.
With the increasing global distribution of high rate dual-frequency global positioning system (GPS) receivers, the production of a real-time atmospheric constituent definition, total electron content (TEC), has become a beneficial contributor to the modeling applications used in the assessment of GPS position accuracy and the composition of the ionosphere, plasmasphere, and troposphere. Historically, TEC measurements have been obtained through post processing techniques to produce the quality of data necessary for modeling applications with rigorous error estimate requirements. These procedures necessitated the collection of large volumes of data to address the various abnormalities in the computation of TEC associated with the use of greater data quality controls and source selection while real-time modeling environments must rely on autonomous controls and filtration techniques to prevent the production of erroneous model results. In this paper we present methods for processing TEC in real time, which utilize several procedures including the application of an ionospheric model to automatically perform quality control on the TEC output and the computational techniques used to address receiver multipath, faulty receiver observations, cycle-slips, segmented processing, and receiver calibrations. The resulting TEC measurements are provided with rigorous error estimates validated using the vertical TEC from the Jason satellite mission.
Nelson A. BonitoEmail:
  相似文献   

16.
The minimax hub location problem sites a facility to minimize the maximum weighted interaction cost between pairs of fixed nodes. In this paper, distances are represented by a rectilinear norm and may be suited to factory layout or street network problems. The problem is already well known (in 2-D) as the round trip location problem and is extended to 3-D in this paper. One rationale for the solution method is based on an extension of the geometric arguments used to solve the minimax single facility location problem. Suppose a budget is provided for interactions, and that each interaction must be accomplished for no more than this cost. The algorithm uses a bi-section search for the feasible budget until it finds the expenditure needed to provide for these flows. The extension in the present paper is that the nodes are permitted to be on different layers (levels). This 3-D version of the problem appears to be a new variant of the hub model. The models and solution techniques developed in the paper are illustrated using a small 55 node problem. Because of a relatively efficient implementation of the bi-section search, the algorithm in 2-D and 3-D is also applied successfully to a 550 node problem.
M. E. O’KellyEmail:
  相似文献   

17.
Analysis of inversion errors of ionospheric radio occultation   总被引:3,自引:0,他引:3  
The retrieved electron density profile of ionospheric radio occultation (RO) simulation data can be compared with the background model value during the simulation and the inversion error can be obtained exactly. This paper studies the inversion error of ionospheric RO through simulation. The sources of the inversion errors are analyzed. The impacts of measurement errors, such as the errors in phase measurements and satellite orbits, are very small and can be neglected. The approximation of straight-line propagation introduces errors at the height of the F1 layer under solar maximum condition. The spherical symmetry approximation of the electron density distribution is found to be the main source of the inversion error. The statistical results reveal some characteristics of the inversion errors. (1) The relative error increases with enhanced solar activity. (2) It is larger in winter than in equinox season, and it is smallest in summer. (3) For all seasons, it is smaller at middle latitude than at other latitudes. (4) For all seasons and geomagnetic latitudes, it is smaller at daytime than at other times. The NmF2 of the ROs from COSMIC are compared with the measurements of ionosondes, and the relative differences show the same dependencies on season, geomagnetic latitude and local time, as the relative errors of the simulated ionospheric ROs.
Xiaocheng WuEmail:
  相似文献   

18.
Troposphere zenith path delays derived from the Global Data Assimilation System (GDAS) numerical weather model (NWM) are compared with those of the International GNSS Service (IGS) solutions over a 1.5-year period at 18 globally distributed IGS stations. Meteorological parameters can be interpolated from the NWM model at any location and at any time after December 2004. The meteorological parameters extracted from the NWM model agree with in situ direct measurements at some IGS stations within 1 mbar for pressure, 3° for temperature and 13% for relative humidity. The hydrostatic and wet components of the zenith path delay (ZPD) are computed using the meteorological parameters extracted from the NWM model. The total ZPDs derived from the GDAS NWM agree with the IGS ZPD solutions at 3.0 cm RMS level with biases of up to 4.5 cm, which can be attributed to the wet ZPDs estimates from the NWM model, considering the less accurate interpolated relative humidity parameter. Based on this study, it is suggested that the availability and the precision of the GDAS NWM ZPD should be sufficient for nearly all GPS navigation solutions.
Constantin-Octavian AndreiEmail:
  相似文献   

19.
Identifying barriers of species and characterize their effects on spatial distribution provide essential information to research in landscape genetics. We propose a weighted difference barrier (WDB) method as an alternative to maximum difference barriers (MDB), and to initiate and integrate more spatial modeling and methods into the problem solving process. Overall, WDB provides quick and straightforward improvements to the drawbacks of MDB. WDB integrates more sample location relationships into the barrier construction and reveals potential barriers that would otherwise go undetected. WDB incorporates both within group and between group genetic information, and delineates the barriers as a more complex pattern.
John RadkeEmail:
  相似文献   

20.
Since before the inception of work by Okabe, the intermingling of spatial autocorrelation (i.e., local distance and configuration) and distance decay (i.e., global distance) effects has been suspected in spatial interaction data. This convolution was first treated conceptually because technology and methodology did not exist at the time to easily or fully address spatial autocorrelation effects within spatial interaction model specifications. Today, however, sufficient computer power coupled with eigenfunction-based spatial filtering offers a means for accommodating spatial autocorrelation effects within a spatial interaction model for modest-sized problems. In keeping with Okabe’s more recent efforts to dissemination spatial analysis tools, this paper summarizes how to implement the methodology utilized to analyze a particular empirical flows dataset.
Daniel A. GriffithEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号