首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
The results of four MAFF surveys (1975–1980) of the sediments in and around the sewage sludge dumping site in Liverpool Bay are presented. Sediments were analysed for particle size distribution, organic carbon concentrations and concentrations of Hg, Cd, Cu, Zn, Pb, Ni and Cr. Concentrations of organic carbon and metals were found to be elevated in the fine ( < 90 μm) fraction in areas associated with the major inputs of these substances to the bay—near the mouth of the Mersey, near the sewage sludge dumping site and at the dredged spoil dumping site.In an attempt to determine any temporal trends between surveys, stations were grouped into four 8×8 km areas from offshore of the dumping ground to the mouth of the Mersey. Changes in the metal concentrations in sediments in the square nearest the sewage sludge dumping site were larger than in the other squares including that nearest the Mersey. Comparison of temporal trends near the sewage sludge site with the quantities actually dumped showed a correlation between the two, consistent with sewage sludge dumping being a major contributor to the metal levels in fine sediments near the dumping ground.  相似文献   

2.
Sources of sedimentary organic matter to a Morse River, Maine (USA) salt marsh over the last 3390 ± 60 RCYBP (Radiocarbon Years Before Present) are determined using distribution patterns of n-alkanes, bulk carbon isotopic analysis, and compound-specific carbon isotopic analysis. Marsh foraminiferal counts suggest a ubiquitous presence of high marsh and higher-high marsh deposits (dominated by Trochammina macrescens forma macrescens, Trochammina comprimata, and Trochammina inflata), implying deposition from ∼0.2 m to 0.5 m above mean high water. Distributions of n-alkanes show a primary contribution from higher plants, confirmed by an average chain length value of 27.5 for the core sediments, and carbon preference index values all >3. Many sample depths are dominated by the C25 alkane. Salicornia depressa and Ruppia maritima have similar n-alkane distributions to many of the salt marsh sediments, and we suggest that one or both of these plants is either an important source to the biomass of the marsh through time, or that another unidentified higher plant source is contributing heavily to the sediment pool. Bacterial degradation or algal inputs to the marsh sediments appear to be minor. Compound-specific carbon isotopic analyses of the C27 alkane are on average 7.2‰ depleted relative to bulk values, but the two records are strongly correlated (R2 = 0.89), suggesting that marsh plants dominate the bulk carbon isotopic signal. Our study underscores the importance of using caution when applying mixing models of plant species to salt marsh sediments, especially when relatively few plants are included in the model.  相似文献   

3.
Replicate portions of a Delaware salt marsh were enclosed in cylindrical microcosms and exposed to elevated levels of inorganic arsenic (arsenate). All biotic and abiotic components in dosed cylinders rapidly incorporated arsenic. Spartina blades showed the greatest arsenic enrichment, with dosed plants incorporating arsenic concentrations an order of magnitude higher than controls. Spartina detritus and sediments also exhibited greatly elevated arsenic concentrations. Virtually all of the arsenic was incorporated into plant tissue or strongly sorbed to cell surfaces. Thus, elevated arsenic concentrations in estuarine waters will be reflected in living and non-living components of a salt marsh ecosystem, implying that increased arsenic will be available to organisms within the marsh ecosystem.  相似文献   

4.
The aim of the present work was to understand the role different salt marsh plants on metal distribution and retention in the Lima River estuary (NW Portugal), which to our knowledge have not been ascertained in this area yet. The knowledge of these differences is an important requirement for the development of appropriate management strategies, and is poorly described for Eurosiberian estuaries, like the one selected. In addition it is important to understand the difference among introduced and native salt marsh plants. In this work, metal levels (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were surveyed (by atomic absorption spectrometry) in sediments from sites vegetated with Juncus maritimus, Spartina patens, Phragmites australis and Triglochin striata (rhizo-sediments), in non-vegetated sediments and in the different tissues of the plants (roots, rhizomes and aerial shoots). In general, rhizo-sediments had higher metal concentrations than non-vegetated sediments, a feature that seems common to sediments colonized by salt marsh plants of different estuarine areas. All plants concentrated metals, at least Cd, Cu and Zn (and Pb for T. striata) in their belowground structures ([M]belowground tissues/[M]non-vegetated sediment > 1). However, when considered per unit of salt marsh area, the different selected plants played a different role on sediment metal distribution and retention. Triglochin striata retained a significant metal burden in it belowground structures (root plus rhizomes) acting like a possible phyto-stabilizer, whereas P. australis had an higher metal burden in aboveground tissues acting as a possible phyto-extractor. As for J. maritimus and S. patens, metal burden distribution between above and belowground structures depended on the metal, with J. maritimus retaining, for instance, much more Cd and Cu in the aboveground than in the belowground structures. Therefore, the presence of invasive and exotic plants in some areas of the salt marsh may considerably affect metal distribution and retention in the estuarine region.  相似文献   

5.
It has been shown that salt marshes may function as efficient sinks for contaminants, namely for mercury. At the rhizo-sediment Hg may be associated with Mn and Fe oxyhydroxides, precipitated as sulphides or incorporated into organic matter. However, to our knowledge, in situ studies have not focused on the related processes at a daily or tidal cycle scales. Thus, the present work aims to study the effect of a common salt marsh halophyte in temperate latitudes (Sarcocornia perennis) on dissolved Fe, Mn and Hg concentrations in the water column. The in situ approach was carried out at a mercury-contaminated salt marsh and at the adjacent non-vegetated area (distance ≤ 4 m), covering two consecutive tidal cycles in order to include the photosynthetic active period and the night processes. During high tide no daily or spatial effects were observed on the concentrations of Mn, Fe and Hg in the water column, due to the dilution effect of the incoming seawater. During low tide the concentrations of Mn, Fe and Hg were significantly higher in the overlaying water column of the salt marsh. At S. perennis mats the concentration of dissolved total Hg was significantly related with the concentration of Mn (r = 0.459, p = 0.028, n = 23), but not with that of Fe (r = 0.367, p = 0.085, n = 23) while no significant relations were found at the adjacent non-vegetated sediments.  相似文献   

6.
The distributions of benthic assemblages, heavy metals and organic carbon (Corg) in sediments were examined during a long-term study at a sewage sludge disposal site off the Mediterranean coast of Israel. The disposal of sewage sludge has a marked but localized, seasonally dependent, impact on the benthic assemblages and sediment quality. Elevated concentrations of Corg, Hg, Cd, Cu, Zn, Pb, and to a lesser degree Ni in the sediments were detected mostly northward of the sewage outfall, in the direction of the prevalent longshore current. High concentrations of Corg and metals were reflected by elevated populations of tolerant and opportunistic polychaetes in spring and by an azoic zone in fall. The impacted area extended mainly towards the north (up to ca. 4 km) and to a lesser extent south of the outfall (up to ca. 2.5 km). No evidence of increased accumulation of sewage sludge with time was found, nor of pollutants associated with it. Principal component analysis (PCA) grouped the anthropogenic metals and Corg with infaunal abundance for the spring surveys, while biotic diversity was negatively correlated with the pollutants. In the PCA of fall surveys, abundance was negatively correlated with the pollutants, decreasing with increased concentration of Corg and anthropogenic metals. We suggest that the seasonal pattern shown by infaunal abundance, anthropogenic metals and Corg is due to the stratification of the water column from spring to fall on one-hand and winter storms on the other. Winter storms resuspend and disperse the fine organic particles, sweeping the site clean of sludge; accumulation of sludge takes place throughout the quiescent periods of the year, when stratification is reestablished. The disposal site is dispersive and the spatial extent of the impacted area varies seasonally and interannually. This monitoring study, in addition to addressing specific questions about sewage sludge impact, represents an unusually large and unique set of long-term measurements that will serve as a basis to evaluate the site recovery following the cessation of disposal.  相似文献   

7.
干旱区湖泊沉积物磁组构参数量值特征环境变化研究   总被引:4,自引:1,他引:3  
对干旱区终闾湖泊沉积物磁组构参数进行了研究,表明干旱区湖泊沉积物磁组构参数值基本介于水动力,风动力沉积物的量值之间。在湖相,湖沼相,泥炭层及受人类影响的洪泛沉积段,沉积物磁组构参数值有明显的区别,同时在同一沉积相中其参烤值也存在较大的变化,指示了沉积动力强度和沉积环境方面的差异。  相似文献   

8.
New England salt marshes are dominated by the supratidal high marsh grass, Spartina patens. This grass forms a nearly planar surface, which makes it highly vulnerable to the predicted regime of accelerated sea-level rise (SLR). If the high marsh cannot keep pace with rising sea level it will be transformed to intertidal environments, leading to unusually rapid coastal evolution. Winter processes such as ice-loading of surface peat may degrade the marsh surface. Large volumes of snow and ice compress peat, resulting in shallow compaction and a net loss of elevation in some areas.On the Webhannet marsh in Maine, a simulated ice compaction experiment indicates that thick ice can compress marsh peat (46 cm simulated ‘ice’ produced 6.9 ± 0.3 mm of compaction; 24 cm ‘ice’ produced 3.0 ± 0.8 mm). Experimental data suggest that ice thicknesses greater than 10 cm depress the marsh surface by 2 mm for each cm of total ice thickness. However, surface elevations rebounded to near-control levels within 2 weeks of the removal of simulated ‘ice’ from the surface of the marsh. Normal winter ice accumulations on New England marshes, therefore, do not appear to be sufficient to permanently compact marsh surface peat and lead to loss in marsh surface elevation.  相似文献   

9.
Total mercury concentrations were determined in surficial sediments, eleven species of benthic organisms and six species of fish from Haifa Bay, Israel. The results show that essentially all of the shallow water zone of the Bay receives anthropogenic mercury. A mercury-cell chlor-alkali plant was identified as the source of pollution. Surficial sediments in the vicinity of the plant, containing up to 0·99 μg Hg/g dry weight, were up to 157 times enriched in mercury relative to an unpolluted area. Mercury levels in the benthic organisms reflected the levels in the sediments. Maximal concentrations reaching 38·7 and 18·2 μg Hg/g dry weight were found in the carnivorous gastropod molluscs Arcularia circumcinta and Arcularia gibbosula, respectively. In all fish species, specimens caught in Haifa Bay had higher mercury concentrations in the muscle tissue than specimens caught south of the Bay. A maximal value of 1·66 μg Hg/g wet weight was recorded in Diplodus sargus.  相似文献   

10.
Artificially introduced cordgrass, Spartina alterniflora, rapidly colonized the intertidal flats of the Jiangsu coast, eastern China. The epibenthos on an intertidal flat invaded by S. alterniflora were studied, to identify how local epibenthos species react to an altered environment. Epibenthic samples and surficial sediment samples were collected along a shore-normal profile in 50 quadrats at ten stations across the Spartina salt marsh; and five control quadrats for a station located on the barren sandy-mud flat. The grain size parameters of the surficial sediments show that S. alterniflora altered the grain size gradient along the profile of the intertidal zone by trapping fine-grained sediments. Spartina alterniflora could inhabit lower elevations than indigenous salt marsh vegetation, thus creating larger areas of finer surficial sediments, which was suitable for not only native epibenthic species but also species which do not exist on the barren sandy-mud flat. Correlation analyses show that the epibenthos were sensitive to sediment grain size and type, on the invaded S. alterniflora salt marsh. Further, there was an interspecific relationship affecting the distribution of epibenthos. The results show that epibenthos preferred ecological niches, within the Spartina salt marsh, even in the same sampling station.  相似文献   

11.
Bioassay using the marine bacteria,Vibrio fischeri and rotifer,Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity of the sludge. Chemical characterization included the analyses of organic contents, heavy metals, and persistent organic pollutants in sludge. Bacterial bioluminescent inhibition (15 min), rotifer mortality (24 hr) and rotifer population growth inhibition (48 hr) assay were conducted to estimate the sludge toxicity. EC50 15 min (inhibition concentration of bioluminescence after 15 minutes exposed) values by Microtox® bioassay clearly revealed different toxicity levels depending on the sludge sources. Highest toxicity for the bacteria was found with the sludge extract from dyeing waste and followed by industrial waste, livestock waste, and leather processing waste. Clear toxic effects on the bacteria were not found in the sludge extract from filtration bed sludge and rural sewage sludge. Consistent with Microtox® results, rotifer neonate mortality and population growth inhibition test also showed highest toxicity in dyeing waste and low in filtration bed and rural sewage sludge. High concentrations of persistent organic pollutants (POPs) and heavy metals were measured in the samples from the industrial wastes, leather processing plant waste sludge, and urban sewage sludge. However, there was no significant correlation between pollutant concentration levels and the toxicity values of the sludge. This suggests that the ecotoxicity in addition to the chemical analyses of various sludge samples must be estimated before release of potential harmful waste in the natural environment as part of an ecological risk assessment.  相似文献   

12.
As part of a geochemical study of C25 and C30 biogenic alkenes in estuarine environments, distributions of these compounds in detritus and sediments collected from a New England salt marsh (Round Swamp on Conanicut Island in Narragansett Bay, Rhode Island) have been determined. The alkene assemblages detected, consisting primarily of four acyclic C25 dienes and trienes and a C30 bicyclic diene, qualitatively resemble those previously reported for other sediments in which anoxic conditions were prevalent. These similarities exist despite significant differences in the principal sources of sedimentary organic matter, suggesting that the occurrence of these specific alkenes is more likely associated with an in situ process common to anoxic environments than with a direct input from a specific source. Size fractionation (> 840 μm and < 840 μm to 1·2 μm) of marsh detritus revealed that the larger size fraction, consisting primarily of decaying Spartina debris, contains significant amounts of alkenes. This result, together with alkene subsurface profiles which show high surface concentrations decreasing to near-background levels by 20 cm, suggest that anaerobic bacteria are mediating in situ production of these compounds. Previous studies of bacterial hydrocarbons have not reported the presence of these C25 and C30 alkenes, although similar compounds have been isolated from several species of methanogenic bacteria. However, attempts to induce alkene synthesis by decomposing Spartina anaerobically in the laboratory were unsuccessful. In light of this result, the exact source of alkenes in marsh sediments remains uncertain. The absence from marsh sediments of other C25 alkenes whose sedimentary distributions had been previously correlated with the presence of marine (planktonic) organic matter implies the existence of different origins for structurally related constituents of this hydrocarbon series.  相似文献   

13.
The number of bacteria in sediments, interstitial water and overlying tidal water of an oligohaline marsh system are about 109, 106 and 106 cells cm?3, respectively. Average cell size in the overlying water (about 0·06 μm3), is much smaller than that in sediments and interstitial water (about 0·18 μm3). Most bacterial cells in sediments are bound to sediment particles and less than 1% of the cells were displaced by percolating water through sediment columns. Concentration of bacteria in flooding tidal waters is generally higher than that in ebbing waters. Movement of bacterial biomass does not appear to be a significant mechanism of particulate organic transport in marsh sediments and marsh sediments do not appear to be a source of suspended bacteria for estuaries.  相似文献   

14.
Mercury speciation was performed in excess activated sewage sludge (ASS) and in marine sediments collected at the AAS disposal site off the Mediterranean coast of Israel in order to characterize the spatial and vertical distribution of different mercury species and assess their environmental impact. Total Hg (HgT) concentrations ranged between 0.19 and 1003ng/g at the polluted stations and 5.7 and 72.8ng/g at the background station, while the average concentration in ASS was 1181+/-273ng/g. Only at the polluted stations did HgT concentrations decrease exponentially with sediment depth, reaching background values at 16-20cm, the vertical distribution resulting from mixing of natural sediment with ASS solids and bioturbation by large populations of polycheates. Average Methyl Hg (MeHg) concentration in ASS was 39.7+/-7.1ng/g, ca. 3% of the HgT concentration, while the background concentrations ranged between 0.1 and 0.61ng/g. MeHg concentrations in surficial polluted sediments were 0.7-5.9ng/g (ca. 0.5% of the HgT) and decreased vertically, similar to HgT. A positive correlation between MeHg and Hg only at the polluted stations, higher MeHg concentrations at the surface of the sediment and not below the redoxline, and no seasonality in the concentrations suggest that the MeHg originated from the ASS and not from in situ methylation. By doing selective extractions, we found that ca. 80% of the total Hg in ASS and polluted sediments was strongly bound to amorphous organo-sulfur and to inorganic sulfide species that are not bioavailable. The fractions with potential bioaccessible Hg had maximal concentrations in the range in which biotic effects should be expected. Therefore, although no bioaccumulation was found in the biota in the area, the concentration in the polluted sediments are not negligible and should be carefully monitored.  相似文献   

15.
Approximately 25 % of the sewage sludge produced in the United Kingdom (about 10 million wet tonnes anually) is disposed of to British coastal waters at 15 sites. A series of tests is being evaluated in order to determine the effects of this practice in relation to the effects due to other polluting inputs, both natural and man-made, to the marine environment. The results presented here are for one site on the south-west coast of Britain. They indicate that the increased metal content of the tissue and the presence of sulphydryl-rich metal-binding proteins in the lysosomes of digestive cells in transplanted mussels can be correlated with exposure at sites overlying metal-rich sediments and to a lesser extent an area used for the disposal of sewage sludge containing metallic contaminants.  相似文献   

16.
One of the main effects of urbanization on coastal areas is through the discharge of sewage, which increases nutrient concentrations in the receiving environment. Salt marshes, like other coastal marine environments, are limited by nutrients, mainly nitrogen, and thus increasing nutrient loadings to a marsh may have consequences on marsh characteristics. We evaluated how the effects of nutrient enrichment in the form of sewage input, affected the vegetation structure and bird assemblages in a Spartina alterniflora salt marsh system near Bahía Blanca, Argentina (39° 01' S - 56° 25' W). Surveys of nutrient concentration, vegetation and birds were made at three different distances from the sewage discharge source. The concentration of ammonium, phosphate, and nitrate and the percent organic matter was higher in marshes nearest to the sewage discharge source. Bird composition and abundance, and vegetation physiognomy changed along a gradient of nutrient concentration. The increased habitat complexity found near the areas of higher nutrient concentration was exploited by birds that use neighboring interior and coastal habitats, including Spartina densiflora marshes, freshwater marshes and upland shrubby habitats. Our results show that local increases of nutrient inputs directly changed the vegetation physiognomy, and indirectly the composition and abundance of bird assemblages.  相似文献   

17.
An unditched salt marsh-creek drainage basin (Holland Glade Marsh, Lewes, Delaware) has a sedimentation rate of 0·5 cm year?1. During normal, storm-free conditions, the creek carries negligible amounts of sand and coarse silt. Of the material in the waters flooding the marsh surface, over 80% disappears from the floodwaters within 12 m of the creek. About one-half of the lost material is theoretically too fine to settle, even if flow were not turbulent; however, sediment found on Spartina stems can account for the loss.The quantity of suspended sediment that does reach the back marsh during these normal tides is inadequate to maintain the marsh surface against local sea level rise. This suspended sediment is also much finer than the deposited sediments. Additionally, remote sections of low marsh, sections flooded by only the highest spring tides, have 15–30 cm of highly inorganic marsh muds.This evidence indicates that normal tidal flooding does not produce sedimentation in Holland Glade. Study of the effects of two severe storms, of a frequency of once per year, suggests that such storms can deposit sufficient sediment to maintain the marsh.The actual deposition of fine-grained sediments (fine silt and clay) appears to result primarily from biological trapping rather than from settling. In addition, this study proposes that the total sedimentation on mature marshes results from a balance between tidal and storm sedimentation. Storms will control sediment supply and movement on micro- and meso-tidal marshes, and will have less influence on macro-tidal marshes.  相似文献   

18.
It has been proposed that future ocean disposal of sewage sludge from the US east coast be done at a site beyond the edge of the continental shelf. In anticipation of that, a monitoring strategy has been developed to determine the average spatial distribution of contamination. The strategy is an iterative series of measurements developed from models of sludge dispersion and settling which are based on characteristics of the disposal site and sewage sludge. Once disposal is initiated at the site, the strategy requires sampling the upper mixed layer at 36 stations, mostly within 100 km of the site, and deployment of near-bottom sediment traps along a line extending 300 km away from the site. Based on initial results, subsequent sampling locations will be selected to refine estimates of the detectable extent of sludge-derived contamination. The sludge constituents which can be used to detect sludge in water at a dilution of 106 and sludge in sediment traps when diluted by 100 with natural material include zinc, PCBs, coprostanol and spores of the bacterium Clostridium perfringens. Other synthetic organic compounds, besides PCB, may prove to be useful tracers.  相似文献   

19.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

20.
Effluent from a large combined sewer overflow (CSO) in Boston and receiving waters near the CSO outfall were sampled during dry and wet weather conditions. Surficial sediments were also collected from the vicinity of the CSO and at nearby sites. The samples were analyzed for a variety of organic constituents including organic carbon and nitrogen, linear alkylbenzenes (LABs), coprostanol and polychlorinated biphenyls (PCBs). As judged by the presence of waste-specific markers (LABs, coprostanol), the CSO effluent contains sewage under both dry and wet weather conditions. When rainfall occurs, the concentration of suspended solids and all organic constituents in the particulate phase increase, ultimately approaching those characteristic of untreated sewage. The concentrations of LABs and PCBs in the effluent are strongly correlated, indicating that PCBs in the CSO are derived from sewage inputs. During heavy rainfall, the vast majority (> 90%) of the hydrophobic organic substances are associated with suspended particulate matter, whereas during dry weather, a significant fraction resides in the operationally defined 'dissolved' phase. Estimates of the mass emission rates of CSO constituents show that > 70% of the suspended particles and > 90% of the particulate organic carbon, hydrocarbons and trace organics are discharged during wet weather. Particles in the receiving water appear to be strongly influenced by the CSO effluent during wet weather. Concentrations of PCBs in surficial sediments near the CSO are correlated with those of coprostanol and the LABs, indicating that these compounds are derived from similar sources. Based on the observed correlations, approximately 60-80% of the sedimentary PCBs originate from sewage. Comparison of sigma LAB/coprostanol ratios of effluent particles, surficial sediments and sewage sludges suggest that the vast majority of the marker compounds and the PCBs in sediments are not from the CSO, but are derived from one of two sewage treatment plants that discharged sludge into the harbor until 1991. The sludge-derived contaminants were probably carried by tidal currents into Dorchester Bay and deposited in shallow, quiescent embayments where sedimentation is favored. These results illustrate the potential importance of long-range transport of waste-derived contaminants in urban harbors and their rapid accumulation in localized depocenters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号