首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The purpose of current study is to produce groundwater qanat potential map using frequency ratio (FR) and Shannon's entropy (SE) models in the Moghan watershed, Khorasan Razavi Province, Iran. The qanat is basically a horizontal, interconnected series of underground tunnels that accumulate and deliver groundwater from a mountainous source district, along a water- bearing formation (aquifer), and to a settlement. A qanat locations map was prepared for study area in 2013 based on a topographical map at a 1:50,000-scale and extensive field surveys. 53 qanat locations were detected in the field surveys. 70 % (38 locations) of the qanat locations were used for groundwater potential mapping and 30 % (15 locations) were used for validation. Fourteen effective factors were considered in this investigation such as slope degree, slope aspect, altitude, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Using the above conditioning factors, groundwater qanat potential map was generated implementing FR and SE models, and the results were plotted in ArcGIS. The predictive capability of frequency ratio and Shannon's entropy models were determined by the area under the relative operating characteristic curve. The area under the curve (AUC) for frequency ratio model was calculated as 0.8848. Also AUC for Shannon's entropy model was 0.9121, which depicts the excellence of this model in qanat occurrence potential estimation in the study area. So the Shannon's entropy model has higher AUC than the frequency ratio model. The produced groundwater qanat potential maps can assist planners and engineers in groundwater development plans and land use planning.  相似文献   

4.
《地学前缘(英文版)》2020,11(4):1203-1217
Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard landscapes wherein risk from individual and/or multiple extreme events is omnipresent.Extensive parts of Iran experience a complex array of natural hazards-floods,earthquakes,landslides,forest fires,subsidence,and drought.The effectiveness of risk mitigation is in part a function of whether the complex of hazards can be collectively considered,visualized,and evaluated.This study develops and tests individual and collective multihazard risk maps for floods,landslides,and forest fires to visualize the spatial distribution of risk in Fars Province,southern Iran.To do this,two well-known machine-learning algorithms-SVM and MARS-are used to predict the distribution of these events.Past floods,landslides,and forest fires were surveyed and mapped.The locations of occurrence of these events(individually and collectively) were randomly separated into training(70%) and testing(30%) data sets.The conditioning factors(for floods,landslides,and forest fires) employed to model the risk distributions are aspect,elevation,drainage density,distance from faults,geology,LULC,profile curvature,annual mean rainfall,plan curvature,distance from man-made residential structures,distance from nearest river,distance from nearest road,slope gradient,soil types,mean annual temperature,and TWI.The outputs of the two models were assessed using receiver-operating-characteristic(ROC) curves,true-skill statistics(TSS),and the correlation and deviance values from each models for each hazard.The areas-under-the-curves(AUC) for the MARS model prediction were 76.0%,91.2%,and 90.1% for floods,landslides,and forest fires,respectively.Similarly,the AUCs for the SVM model were 75.5%,89.0%,and 91.5%.The TSS reveals that the MARS model was better able to predict landslide risk,but was less able to predict flood-risk patterns and forest-fire risk.Finally,the combination of flood,forest fire,and landslide risk maps yielded a multi-hazard susceptibility map for the province.The better predictive model indicated that 52.3% of the province was at-risk for at least one of these hazards.This multi-hazard map may yield valuable insight for land-use planning,sustainable development of infrastructure,and also integrated watershed management in Fars Province.  相似文献   

5.
Irrigated agriculture is a clear source of non-point pollution by salts and nitrogen species. The impact of such pollution should be quantified according to specific cases. The case of the Malfarás creek basin, a sprinkler irrigation district located in the semiarid Ebro valley in northeast Spain, has been evaluated. The main crops in the district were corn, barley and alfalfa, occupying 93 % of the irrigated area. The fate of water, salts and nutrients was evaluated by a daily water balance developed at a field scale for the natural year 2010. The yearly data of the whole set of 101 irrigated fields plus the non-irrigated area compared to the measured drainage produced a basin water balance with a low degree of error. The basin consumed 90 % of the total water input of which 68 % was used for crop evapotranspiration and the rest was lost due to non-productive uses. 16 % of the incoming water left the irrigation area as drainage water. The irrigated area was responsible for 87 % of the drainage. The average volume of drained water was 152 mm year?1 for the whole basin area. The irrigated area drained 183 mm year?1. The basin exported 473 kg of salt per hectare during 2010. This value was the lowest of the sprinkler irrigation areas in the Ebro valley, mainly due to the lower soil salinity. All the crops except barley received a nitrogen surplus of 10–50 % above their needs. The extra nitrogen entered the water cycle increasing the nitrate concentration in the aquifer water (150 mg L?1) and drainage water (98 mg L?1). In 2010 the mass of nitrogen exported by drainage was 49 kg per irrigated hectare. This value is too high for this type of irrigation system and implies that 17 % of nitrogen applied as a fertilizer was lost to drainage water. The key to decreasing the nitrogen leaching and pollution that it causes could be appropriate time-controlled fertigation along with better irrigation scheduling.  相似文献   

6.
The Patuxent River, Maryland, is a nutrient-overenriched tributary of the Chesapeake Bay. Nutrient inputs from sewage outfalls and nonpoint sources (NPS) have grown substantially during the last four decades, and chlorophylla levels have increased markedly with concomitant reductions in water quality and dissolved oxygen concentrations. The Patuxent has gained national attention because it was one of the first river basins in the U.S. for which basin-wide nutrient control standards were developed. These included a reduction in NPS inputs and a limit on both nitrogen (N) and phosphorus (P) loadings in sewage discharges intended to return the river to 1950s conditions. Full implementation of point source controls occurred by 1994, but population growth and land-use changes continue to increase total nutrient loadings to the river. The present paper provides the perspectives of scientists who participated in studies of the Patuxent River and its estuary over the last three decades, and who interacted with policy makers as decisions were made to develop a dual nutrient control strategy. Although nutrient control measures have not yet resulted in dramatic increases in water quality, we believe that without them, more extensive declines in water quality would have occurred. Future reductions will have to come from more effective NPS controls since future point source loading will be difficult to further reduce with present technology. Changing land use will present a challenge to policy makers faced with sprawling population growth and accelerated deforestation.  相似文献   

7.
Water pollution is a widespread problem in different areas of the world. Some of these problems originated from point contamination sources and widespread contaminant outlet sources which are observed in every country. The major elements and chemical loads of surface water have been dominated by constituents derived directly or indirectly from human activities and/or industrial practices that have increased additives in the last several decades. The point sources of contamination may result from the direct wastewater discharges to the dam sites, which are considered to be the most commonly encountered water pollution problems. One of these problems is the eutrophication process which usually occurs in the static water mass of lakes and other surface water reservoirs. This process may be caused by the continuous increase of nitrogen and phosphorus contents and decrease of O2 level in water causing an anaerobic condition which may stimulate algae-growth flow in these water bodies, consequently reducing the quality of water. Of course, there are many research methods for determining the various kinds of water pollution. In this research, the hydrochemical parameters were evaluated to estimate the types of pollution sources, the level of pollution, and its environmental impacts on the Tahtal dam reservoir.  相似文献   

8.
The watershed of the Ningxia–Inner Mongolia reach of the Yellow River suffers serious wind erosion hazards and the areas with high wind erosion probabilities need to be identified to help in the building of the correct wind-sand blown hazard protection systems. In this study, the Integrated Wind-Erosion Modelling System model and Normalized Difference Vegetation Index (NDVI) data set were used to identify the distributions of threshold wind speeds and wind erosion occurrence probabilities. Through field observations, the relationships among NDVI, vegetation cover, frontal area (lateral cover), roughness length, and threshold friction velocity were obtained. Then, using these relationships, the spatial distributions of threshold wind speeds for wind erosion at a height of 10 m for the different months were mapped. The results show that the threshold wind speed ranged from 7.91 to 35.7 m/s. Based on the threshold wind speed distributions, the wind erosion occurrence probabilities of different months were calculated according to the current wind speed. The results show that the distributions of wind erosion occurrence probabilities and threshold wind speeds were related to each other. The resulting maps of threshold wind speeds and wind erosion occurrence probabilities would help environmental and agricultural researchers in determining some strategies for mitigating or adapting from wind erosion hazards.  相似文献   

9.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   

10.
Organic material in metal contaminated soils around an abandoned magnetite mine–smelter complex in the critical Highlands watershed protects the groundwater and surface water from contamination. Metals in these waters were consistently below local and national water standards. Two groups of soil types cover the area: (1) Group A disturbed metal-rich soils, and (2) Group B undisturbed organic soils. Chromium and nickel were more elevated than other metals with Cr more widespread than Ni. In Group A, Cr correlated strongly with sesquioxides in the lower horizons (Fe2O3: r = 0.74, p < 0.025; Al2O3: r = 0.92, p < 0.005). In Group B, Cr correlated strongly (r = 0.96, p < 0.005) with soil organic matter (SOM) in the O-horizons. Ni–Cr (Group A: 52 and 70% in O- and lower horizons, respectively; Group B: ~100% in both horizons) and V–Cr correlations (78% only in Group A lower horizons) suggest similar retention mechanisms for these elements. Average soil \textpH\textCaCl2 {\text{pH}}_{{{\text{CaCl}}_{2} }} for both groups ranged between 3.65 and 5.91, suggesting that soil acidity is determined by organic acids and solubility of Al3+ releasing H+ ions. SOM and sesquioxides contribute significantly to creating naturally occurring filtration systems, removing metals, and protecting water quality. High Ca, Fe, and Ti in Group A soils suggest slag and ash were mixed into the soils. Some low-Cr sources include magnetite, slag, and ash (100, 100 and 200 mg/kg, respectively). Constant ZrO 2 :TiO 2 ratios in the lower soils indicate soil formation from breakdown of underlying tailing rocks, contributing Cr to these layers.  相似文献   

11.
Stream water chemistry is dependent on the physical, chemical and biological processes occurring in the watershed. Understanding the governing mechanism of the stream water chemistry in a watershed is the first step for the water quality management. The study area drains a total catchment area of 1.46 km^2 and consists of forest (80%), upland (15%) and rice paddy field (5%). The studied area has two distinctive bedrocks, quartzite and schist. We periodically collected the stream water samples at mainstream and tributaries and the pH, electrical conductivity (EC), alkalinity and the concentrations of cations and anions of the collected stream water samples were determined in the field and laboratory. The all collected water samples were nearly neutral and the EC and concentrations of Na, K, Ca, Sr, Si and HCO3 of the stream water samples collected from the schist terrain had greater values than those from the quartzite terrain. The mainstream running along the boundary of schist and quartzite terrains had the intermediate values of the tributaries. The stream water samples collected in and near the upland showed a high concentration of NO3^- than those of forest regardless the lithology. The stream pathway was also directly reflected on the chemistry of stream water. The stream water drained in the forest of quartzite terrain had the lowest values of alkalinity, EC and concentrations of cations and anions but the stream water drain in the upland of schist terrain had the highest values of EC and concentrations of cations and anions, especially NO3^-.  相似文献   

12.
In volcanic terrains, dormant stratovolcanoes are very common and can trigger landslides and debris flows continually along stream systems, thereby affecting human settlements and economic activities. It is important to assess their potential impact and damage through the use of landslide inventory maps and landslide models. In Mexico, numerous geographic information systems (GIS)-based applications have been used to represent and assess slope stability. However, there is no practical and standardized landslide mapping methodology under a GIS. This work provides an overview of the ongoing research project from the Institute of Geography at the National Autonomous University of Mexico that seeks to conduct a multi-temporal landslide inventory and produce a landslide susceptibility map by using GIS. The Río El Estado watershed on the southwestern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The method encompasses two main levels of analysis to assess landslide susceptibility. First, the project aims to derive a landslide inventory map from a representative sample of landslides using aerial orthophotographs and field work. Next, the landslide susceptibility is modelled by using multiple logistic regression implemented in a GIS platform. The technique and its implementation of each level in a GISs-based technology is presented and discussed.  相似文献   

13.
This paper focuses on the relationship between the karst aquifers and the Hérault River (southern France) as a function of hydrologic conditions. The combination of major and trace element, and Sr and Pb isotopes determined on dissolved load in karstic springs makes it possible to identify a dynamic scheme of the hydrology of the karstic area.In the headwaters part of this area, the Sourcettes Spring is fed by an interrupted stream that infiltrates at the basement-sedimentary cover contact. Internal geochemical processes are also pointed out: (1) water–rock interactions during underground circulation, and (2) water originating from different layers of the aquifer may show different chemistry depending on the hydrological conditions. The Vernède Spring, is fed by a second water supply during high flows (previously considered as unconnected). Finally, the Cent-Fonts Springs have been confirmed to be fed by the Buège interrupted stream.Pb isotopes on the dissolved and particulate loads of the river samples make it possible to discriminate the natural (local rocks) versus anthropogenic (mining district and road traffic) Pb sources. The Pb isotope investigations on karstic water make it possible to differentiate between neighboring springs presenting identical Sr isotope and element ratios, and to point out different underground circulation.
Resumen Este artículo trata de la relación río-acuífero kárstico en la cuenca de Hérault (Francia), en función de las condiciones hidrológicas. La combinación de elementos principales, elementos traza, e isótopos de estroncio y plomo en muestras de manantiales kársticos permite construir un esquema dinámico de la zona.El manantial de Sourcettes, en la parte alta de la región, está alimentado por una corriente interrumpida que se infiltra a través la cubierta sedimentaria del lecho. También, se apunta a los procesos internos geoquímicos: (1) interacciones roca-acuífero, (2) aguas procedentes de capas diferentes del acuífero, dependiendo de las condiciones hidrológicas. El manantial de Vernède, en el sector oriental de la cuenca, se nutre de una segunda fuente de agua en períodos de aguas altas, que anteriormente se consideraba desconenctada. Finalmente, se ha confirmado que los manantiales de Cent-Fonts captan las aguas del curso interrumpido del Buège.Los isótopos de plomo, tanto en fase disuelta como en suspensión de muestras de río, permiten discriminar entre orígenes naturales (rocas naturales) y antrópicos (minería y tráfico) de este elemento. Las investigaciones en aguas kársticas llevan a diferenciar entre manantiales vecinos que tienen relaciones de isótopos de estroncio idénticas, así como a proponer circulaciones distintas en el acuífero por drenaje o por mineralización no diseminada del plomo.

Résumé Cet article s'intéresse à la relation entre le karst et une rivière dans le bassin de l'Hérault (France), en fonction des conditions hydrologiques. La combinaison des éléments majeurs, des traces et des isotopes de Sr et Pb déterminés dans la charge dissoute de sources karstiques permet de construire un schéma dynamique de la région karstique.Dans la partie la plus haute de cette région, la source des Sourcettes est alimentée par un cours d'eau qui s'infiltre au contact de la série sédimentaire sur le socle. Des processus géochimiques sont également mis en évidence: (1) des interactions eau-roche au cours du trajet souterrain, (2) de l'eau provenant de différents niveaux de l'aquifère en fonction des conditions hydrologiques. Dans la partie orientale du bassin, la source Vernède reçoit une seconde alimentation lors des fortes crues, précédemment considérée comme n'étant pas connectée. Finalement, on confirme que la source des Cent-Fonts est alimentée par les pertes de la rivière de la Buèges.Les isotopes du Pb dans les charges dissoute et solide des échantillons de rivières ont conduit à faire la distinction entre les sources naturelle (roches locales) et anthropique (mines et trafic routier). Les études sur les isotopes du Pb dans les eaux karstiques permettent de différencier les sources voisines présentant des rapports d'éléments et de signatures isotopiques du Sr identiques, et à distinguer différentes circulations souterraines drainant ou non des minéralisations disséminées de Pb.

  相似文献   

14.
Since the coexistence of the Cretaceous and Palaeocene was ascertained in the Hengyang Basin of Hunan in the middle of the 1960's, the Cretaceous and Tertiary boundary has been discussed in several papers, but it still remains controversal. The points at issue are the connotation, stratigraphical position and lateral correlation of the Dongtang (or Chejiang) Formation.  相似文献   

15.
A simple mechanical model explaining the long-period (about 100-year) variations in the Earth’s rotational velocity is proposed. This model takes into account the gravitational interaction of the mantle with the solid core of the Earth and the fact that the core rotation leads that of the mantle. Well-known Earth parameters provide estimates of the gravitational torque that support the proposed model. The mathematical problem involved reduces to the classical problem of a nonlinear oscillator exposed to a constant torque. The well-known parameters of the core-mantle system result in a stable equilibrium and a stable limiting cycle on the phase cylinder of this oscillator. This equilibrium corresponds to a single angular velocity for the mantle and solid core, with no long-period oscillations in the length of the day. The limiting cycle corresponds to the core rotation leading the mantle rotation. In this case, the ellipsoidality of the gravitationally interacting bodies provides a periodic interchange of kinetic angular momentum between the mantle and solid core that results in long-period variations in the length of the day. The proposed model does not support the formerly widespread opinion that the core rotates more slowly than the mantle.  相似文献   

16.
Ag, Pb, Sn and Zn ores have been intensively mined and processed at Cerro Rico de Potosí, Bolivia since 1545. Acid mine drainage (AMD) and mineral processing plant effluent are prime sources of water contamination in the headwaters of the Upper Rio Pilcomayo watershed. Streams receiving AMD drainage from the slopes of Cerro Rico and surrounding landscapes were sampled during the dry (July–August 2006) and wet (March 2007) seasons of one water-year. In-stream waters contained total metal concentrations of up to 16 mg/L As, 4.9 mg/L Cd, 0.97 mg/L Co, 1,100 mg/L Fe, 110 mg/L Mn, 4.1 mg/L Pb, and 1,500 mg/L Zn with pH ranging from 2.8 to 9.5. AMD-impacted streams contained elevated concentrations of the same major ecotoxic constituents present in AMD discharges at concentrations orders of magnitude greater than in those streams unimpacted by AMD. Many of the AMD impacted water bodies are more degraded than class “D” of the Bolivian receiving water body criteria, rendering them unfit for domestic or agricultural use. Natural attenuation is insufficient to render waters safe for use, however, some of these waters are currently being utilized for irrigation and livestock watering. The data indicate that historic and current mining activities have transformed these key natural resources into potential human and environmental health hazards.  相似文献   

17.
18.
The distribution of permafrost and taliks is very complex in the Tuotuo River Basin(TRB), which is located in interior of the Qinghai-Tibet Plateau. Characterizing the spatial distribution and the thermal stability of permafrost and taliks is of great significance to community activities and engineering construction in TRB. Based on the zonation of permafrost and talik distribution around TRB conducted in the 1980s, the soil temperature and its variation process of permafrost and taliks in the south and north banks of the Tuotuo River were analyzed by using the observation data of five boreholes(N1~N5)along the Qinghai-Tibet Railway in the north bank and five boreholes(S1~S5)on the first terrace in the south bank. The results showed that, under the climate warming, permafrost and taliks in the north banks experienced significant degradation and warming process. From 2005 to 2020, the permafrost at the N1 borehole has undergone a significant down-draw degradation process, from extremely unstable and high-temperature permafrost to thawed zone. From 2005 to 2013, the annual average ground temperature of the talik at N2 increased at a rate of 0. 3~0. 4 °C·(10a)-1. At Maqutang on the south bank, permafrost prevails from the first-class terrace to the gentle slope of the Kaixinling Mountain, with both through and non-through taliks on the first-class terrace. The spatial distribution and the thermal stability of permafrost and talik in the TRB are further promoted by analyzing the changes in temperatures at boreholes in the basin. However, to meet the requirements of mapping and engineering construction of permafrost and taliks in the TRB, it is still necessary to carry out geological investigation with multiple methods and in-depth research on development mechanism of taliks in the future. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

19.
Over the past two decades development has been shifting its focus toward smaller scales and particular problems. As a result, the household has become an increasingly important institution for development, and has come under increased scrunity as development practitioners and scholars seek to better understand this institution’s functions and foundations, trying to ‘get the household right’. These efforts, rather than clarifying the character and the function of the household, have contributed to its indeterminacy by reifying the very institution they seek to analyse. Arguing that these efforts fundamentally miss the point of examining the household, this paper introduces a different framework of analysis that addresses the household not as a fixed object of research, but as a local construction that embodies flows of power and knowledge both within and transcending the local. Using the example of varying constructions of the household in two villages in Ghana’s Central Region, this article illustrates how such an approach allows us to address the various functions of the household as particular embodiments of these flows, an approach that better explains the endurance or ephemerality of these functions. Such an approach provides a stronger foundation for the consideration of how particular constructions of this institution may have troubling implications for issues like gender equity and sustainability.  相似文献   

20.
The following determinations in the Norwegian fjord Framvaren and the Black Sea have been compared: carbon-14, carbon-13, alkalinity, total dissolved inorganic carbon, sulfide, tritium (HTO), trace metals, silica, ammonium and phosphate. The historical development of the two anoxic basins is quite different. The carbon-14 age of the total inorganic dissolved carbonate in the deep water is 2000 years in the Black Sea, but only 1600 in Framvaren. The fresh water supply and composition are different. The rivers entering the Black Sea have a high alkalinity, but the river input and runoff to Framvaren has a very low alkalinity. The alkalinity, carbonate and sulfide concentrations in the anoxic waters below the chemoclines are much higher in Framvaren. This is mainly an effect of the different surface to volume ratios. The difference in carbon-13 (-8 for the Black Sea deep water, -19 in the Framvaren bottom water) is mainly due to the smaller imprint of the decomposition of organic matter on the Black Sea deep water.The concentration of trace metals in the particulate form are about the same in the deep water. About 76% of the molybdate in seawater is lost in the sulfidic water of Framvaren, and about 82–96% of the molybdate carried into the Black Sea by the Bosporus undercurrent is lost in the deep water. The relation between silica, ammonium and phosphate can be understood if part of the ammonium is being removed by denitrification, a process that most likely has been going on for thousands of years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号