首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
利用电子探针能谱仪检查新矿物——锡铁山石的成分时,发现有相当含量的氯。因此,原来的化学式Fe3+(SO4)(OH)·7H2O应修改为Fe3+(SO4)Cl·6H2O。  相似文献   

2.
中国东部花岗岩类141个Mg-Fe云母的化学成分将近90%的变化属于八面体层内的类质同象置换,置换矢量Mg 1Fe+2和Fe-3+2(R+3)-2组成了天然黑云母平面,大约80%的变化应当解释为基本置换8Mg 1Fe+2+Fe-3+2(R+3)2.这些是Mg-Fe云母在广泛的自然条件下表现出来的最主要的晶体化学关系。文中还提出了置换矢量的长度、分量和以及电价和三个参数,用以识别矿物化学成分变化的类质同象置换特征。  相似文献   

3.
孙世华  于洁 《地质科学》1989,(2):176-189
给出云母化学成分比值FM=6(Fe+2+Mn)/(Fe2++Mn+Mg),用以表示Mg-Fe云母成分变化的基本趋势。根据291个云母的化学成分相对于FM值的异常变化,提出了天然Mg-Fe云母自然分类的新方案:把FM≌1.20(1.05-1.35)、4.80作为区分金云母、黑云母和铁叶云母的界线;FM>0.60的金云母称为铁金云母;以FM=2.70、3.60把黑云母再细分为富镁黑云母、镁铁黑云母和富铁黑云母。Mg-Fe云母自然分类的本质是各成员云母之间白云母置换方式和限度的潜在差异在不同的自然结晶条件下的反映。  相似文献   

4.
漠滨金矿成矿物理化学条件的水—岩反应实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
谷俐  戴塔根 《地球学报》2003,24(1):79-84
以漠滨金矿围岩地球化学特征和矿物流体包裹体组成为基础,模拟特定体系水-岩相互作用实验,研究结果表明,漠滨金矿的成矿元素Au主要源于赋矿围岩--板溪群五强溪组一套浅变质碎屑砂岩、砂质板岩和凝灰质板岩。Cl^-在中低温热液体系中能与Au形成稳定络合物的形式进行运移,因此Cl^-在该区Au成矿过程中起着相当重要的作用。成矿热液流体中Au主要以金硫、金氯络合物形式在溶液中迁移,阴离子∑S、Cl^-对金的活化、迁移及沉淀起主导作用。溶液中硫氯离子浓度、溶液酸碱度及反应温度是金活化、迁移及沉淀的决定性因素。  相似文献   

5.
杨柏林 《地质科学》1991,(3):268-276
本文以新疆阿尔泰某多金属矿区为例,对岩矿光谱特征、不同岩性段岩石化学特征、细分红外光谱遥感图象色调异常进行研究并通过野外验证后提出:Fe3+除在900nm 处具有强吸收特征外,在2150nm 附近有一个反射峰特征;细分红外光谱遥感图象色调异常的形成机理是与 Fe3+的2150nm 附近的反射峰特征有关的综合光谱信息的反映。  相似文献   

6.
蓝藻聚铁作用的模拟实验   总被引:3,自引:0,他引:3       下载免费PDF全文
实验模拟前寒武纪大气的高二氧化碳分压(PCO2),低氧浓度条件下,加入较低浓度(6μg/g)铁的Zarronk培养液培养蓝藻Spirulina platensis,观察铁的沉淀与凝聚。藻在生长过程中不断改变环境的离子平衡系统以及pH,Eh等,造成铁的氧化、还原、络合和Fe3+沉淀。实验组与未加蓝藻的对照组有显著差别。实验证实藻在聚铁和铁矿形成中起重要作用。  相似文献   

7.
韩成 《地质科学》1993,28(2):177-182
天然勃姆石矿在适当焙烧条件下可相变成γ-Al2O3,而γ-Al2O3,具有吸附水体中F-的性能。吸附F-后可用稀NaOH溶液解吸,酸中和再生。解吸后的含氟NaOH废液可用石灰粉回收,既减少了NaOH的消耗,又避免了对环境的污染。  相似文献   

8.
董麒  叶大年 《地质科学》1993,28(1):44-51
绝大部分的亚硝酸盐和氰化物属于钙钛矿型结构,但有部分化合物为“反”钙钛矿型结构,充填空洞A位的阳离子的拓扑体积为0。阴离子团NO2-和CN-的拓扑体积都近乎常数,分别为41.73Å3和40.03Å3,标准方差σn-1=1.516和σn-1=1.25。由此,进一步证明了原来的一套离子拓扑体积数值的普适性。“反”钙钛矿型结构中A位阳离子的平均半径rA>1.00Å时,三价阳离子会产生扩容效应,其扩容系数大约是其本身拓扑体积的2倍;正钙钛矿型结构中,当A位是由半径较大的Cs+充填时,Cs+也会产生扩容效应,其扩容系数约为24Å3。氰化物中结晶水分子的拓扑体积近乎常数,为24Å3或0。  相似文献   

9.
在含金碳酸盐矿床的表生交代作用中,形成的风化流体倾向于碱性,因此,不适于金呈氯的络合物迁移的媒介,而在这种矿床中次生金的再活化常可归因于金与含硫配体的络合作用。通过可靠的热动力学计算,金、银分别在Au—S—O_2—H_2O和Ag—S—O_2—H_2O体系中的溶解度与金和硫代硫酸盐及二硫化物配体络合物的形成有关。最稳定的络离子是Au(S_2O_3)2~(3-)(当fO_2>10~(60))和Au(HS)_2~-(当fO_2<10~(60)),它们存在于中性或碱性溶液中。类似于金,银在中等氧化环境中形成一个稳定的硫代硫酸盐络离子Ag(S_2O_3)2~(3-),在还原、碱性介质中形成二硫化物络离子AgHS~D和Ag(HS)_2~-。在强氧化的中性或酸性溶液中,由于AgS_2O_3~-、Ag~+和AgSO_4~-络离子的形成,使Ag的溶解度增高。然而,胶态的、晶质的及呈合金态的金和银与0.1molNaS_2O_3溶液反应没有显示各自独立的溶解度。以金为例,其在0.1molNa_2S_2O_3溶液中的溶解度由于银的硫代硫酸盐络离子及合金态的银的存在而增高,这种性质可能与形成混合金属络离子(Au,Ag)(S_2O_3)2~(3-)有关。在巴布亚新儿内亚的Wau地区,碳酸盐矿床氧化代中次生金的性质和矿物组合与早期硫作为硫代硫酸盐络离子的再活化是一致的。这里的次生金是粗大结晶的,与50~75at%(原子百分此)的银组成合金,富集于潜水面上,并与二氧化锰共生于氧化带中。  相似文献   

10.
东坪金矿床围岩蚀变特征、流体包裹体特征与氢氧同位素特征研究表明,成矿流体富集K+、Na+、Au+、Cl-和CO2、H2S,成矿溶液以岩浆热液为主,但有天水的混合。金在溶液中以Au(HS)2-和AuCl2-形式存在,构造活动引起的压力突变和流岩反应是引起金沉淀的主要因素。围岩蚀变以钾化为主,其次是硫化、钠化和硅化、碳酸盐化。金矿化与K/Al值呈反相关,与Na/Al值和S/Fe呈正相关。K/Al值的最高点与Na/Al值的最低点的对应关系可以用于圈定矿体。  相似文献   

11.
AOKI  K. 《Journal of Petrology》1963,4(2):198-210
Seven new analyses of kaersutites and.two of oxykaersutitesfrom Japan and surrounding areas are given, together with theiroptical properties. The type formula of kaersutite can be writtenas (Na,K)Ca2Mg3Fe2+(Ti,Fe3+)Aliv2Si6O22(OH)2 and that of oxykaersutiteas (Na,K) Ca2Mg3(Ti,Fe3+)2Aliv2Si6O24. Transformation from kaersutiteto oxykaersutite must have taken place when the ratio of Fe3+/Fe2+was about 2.  相似文献   

12.
The subsolidus phase relationships of magnetite, hercynite,hematite, corundum, wostite, and iron are described. The phaseswere synthesized from chemical mixtures. Reactions and solidsolution between them were induced under controlled conditionsof composition, temperature, total vapor pressure, and partialpressure of oxygen. Reaction rates are slow, so that the experimentslasted from 1 to 40 days, and quenching is completely successful. A solvus was determined which limits solid solution along themagnetitc-hercynite join at temperatures below 860o?15oC. Compositionsof the spinel solid solutions were determined by measuring theshift of the (440) reflection, using a powder X-ray diffractometer.The calibration curve, 20 vs. composition, was made from measurementsof spinel solid solutions synthesized in the one-phase region.The cell edge ao changes from 8–391?0.002 A (magnetic,Fe+2Fe2+2O4OJ to 8.150?0.004 (hercynite, Fe+2Al2O4)by ao?8.391–0.00190x- 0.5X210-5 (X is mol per cent FeAl2O4 in solid solution). In the system Fe-Al2-O3-O there are five univariant assemblages: 1. Hematite-corundum+magnetite +V (vapor) 2. Corundum+magnetite+hercynite+V 3. Magnetite+hercynite+w?stite+V 4. Hercynite+wilstite+iron+V 5. Hercynite+iron+corundum+V The lines were located by determining the composition of themagnetite, hercynite, hematite, and corundum solid solutionsfor each assemblage. The diagrams provide a basis for the discussion of the paragenesisof the oxide minerals. The progressive metamorphism of lateritedeposits can be represented by (1) laterites and bauxites: hematiteH+hydratedaluminum oxides; (2) diasporites: hematite+diaspore+corundum,with magnetite as a rare accessory; (3) emery: corundum+magnetite,with hematite as an accessory. The path of these mineral changeson the diagrams shows the decrease in oxygen content of thesolids with decrease in the partial pressure of oxygen and relatesthe aluminum content of the magnetite to temperature. The occurrences of hercynite are discussed. It is a rare mineralbecause it requires unusual conditions to grow, i.e. relativelylow oxygen pressure and an extremely Fe-Al-rich environment.  相似文献   

13.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

14.
The major mineral assemblages of the metabasites of the Omoiji-Nagasawaarea in central Shikoku are hematite+epidote+chlorite+actinolite,riebeckitic actinolite+epidote+chlorite, epidote+chlorite+actinolite,and pumpellyite+epidote+chlorite+actinolite. The constituentminerals are often heterogeneous and assemblages in the fieldof a thin section sometimes do not obey the phase rule, butif grains apparently in non-equilibrium with others are excludedand domains of chemical equilibrium are appropriately chosenthe assemblages approximately obey the phase rule. The stability of hematite, pumpellyite, and epidote associatedwith chlorite and actinolite can be dealt with in terms of aternary system with appropriate excess phases. By fixing theFe2+/(Fe2+ +Mg) ratio of chlorite, it is dealt with in termsof stability relations in the system Ca2Al3Si3O12(OH)–Ca2AlFe2Si3O12(OH)with excess chlorite, actinolite, quartz, and controlled PH2O.The maximum and minimum Fe3+ contents of epidote in this modelsystem are determined by hematite+epidote+chlorite+actinoliteand pumpellyite+epidote+chlorite+actinolite assemblages. Themaximum Fe3+ of the three phase assemblage epidote+chlorite+actinoliteis insensitive to temperature, but the minimum Fe3+ contentof epidote is sensitive to temperature and can be used to definethe metamorphic grade by a continuous quantity related to temperature.The phase relations expected for the model system are in goodagreement with the parageneses of the Sanbagawa terrain in centralShikoku and offer an explanation to the rule of Miyashiro &Seki (1958a) that the compositional range of epidote enlargeswith increasing temperature. The model also makes it possibleto estimate semi-quantitatively the temperature range in whichthe assemblage pumpellyite+epidote+chlorite+actinolite is stable.The possible maximum range is about 120 ?C, but the assemblageis stable in metabasite only for about 90 ?C. The higher temperaturelimit of the pumpellyite-actinolite facies defined by the disappearanceof pumpellyite in metabasite corresponds to the temperatureat which epidote with Fe3+/(Fe3+ +Al) = 0.10 0.15 coexistswith pumpellyite, actinolite, and chlorite. The compositions of epidotes in the metabasites of the Omoiji-Nagasawaarea cluster around Fe3+/(Fe3+ +Al) = 0.33. The grade of thisarea is close to the lower temperature stability limit of thepumpellyite+epidote+chlorite+actinolite assemblage.  相似文献   

15.
A series of Fe and Mg partition experiments between plagioclase and silicate liquid were performed in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O under oxygen fugacities from below the IW buffer up to that of air. A thermodynamic model of plagioclase solid solution for the (CaAl,NaSi,KSi)(Fe3+,Al3+)Si2O8-Ca(Fe2+,Mg)Si3O8 system is proposed and is calibrated by regression analysis based on new and previously reported experimental data of Fe and Mg partitioning between plagioclase and silicate liquid, and reported thermodynamic properties of end members, ternary feldspar and silicate liquid. Using the derived thermodynamic model, FeOt, MgO content and Mg/(Fet+Mg) in plagioclase can be predicted from liquid composition with standard deviations of ǂ.34 wt% (relative error =9%) and ǂ.08 wt% (14%) and ǂ.7 (8%) respectively. Calculated Fe3+-Al exchange chemical potentials of plagioclase, mFe3 + ( Al )- 1 Pl{\rm \mu }_{{\rm Fe}^{{\rm 3 + }} \left( {{\rm Al}} \right)_{{\rm - 1}} }^{{\rm Pl}} agree with those calculated using reported thermodynamic models for multicomponent spinel, mFe3 + ( Al )- 1 Sp{\rm \mu }_{{\rm Fe}^{{\rm 3 + }} \left( {{\rm Al}} \right)_{{\rm - 1}} }^{{\rm Sp}} and clinopyroxene, mFe3 + ( Al )- 1 Cpx{\rm \mu }_{{\rm Fe}^{{\rm 3 + }} \left( {{\rm Al}} \right)_{{\rm - 1}} }^{{\rm Cpx}} . The FeOt content of plagioclase coexisting with spinel or clinopyroxene is affected by Fe3+/(Fe3++Al) and Mg/(Fe+Mg) of spinel or clinopyroxene and temperature, while it is independent of the anorthite content of plagioclase. Three oxygen barometers based on the proposed model are investigated. Although the oxygen fugacities predicted by the plagioclase-liquid oxygen barometer are scattered, this study found that plagioclase-spinel-clinopyroxene-oxygen and plagioclase-olivine-oxygen equilibria can be used as practical oxygen barometers. As a petrological application, prediction of plagioclase composition and fO2 are carried out for the Upper Zone of the Skaergaard intrusion. The estimated oxygen fugacities are well below QFM buffer and consistent with the estimation of oxidization states in previous studies.  相似文献   

16.
Sillimanite from a variety of high-grade metamorphic rocks containsfrom 0.13 to 1.82 weight per cent Fe2O3 and less than 0.1 weightper cent TiO2. The iron is trivalent and substitutes for Alonly. Ilmenite associated with the sillimanite contains no morethan 0.4 weight per cent Al2O3, SiO2, CaO, and MnO; and MgOdoes not exceed 1.6 weight per cent. It ranges in compositionfrom Ilm99Hem1 to Ilm85Hem15. A least squares fit of precision unit cell data on 10 analyzedsillimanites gives the following cell dimensions for iron-freesillimanite: a = 7.4830 Á, b = 7.6708 Á, c = 5.7694Á and V = 331.15 Á3. The projected increase incell volume with substitution of 10 mole per cent Fe2SiO3 is1.66 per cent. A regular increase in the Fe2O3 content of sillimanite withincreasing Fe2O3 content of associated ilmenite in 15 of 21samples analyzed suggests that sillimanite and ilmenite crystallizedin equilibrium in the 15 samples. The compositions of the tensillimanite-ilmenite pairs analyzed by the author fit the followingempirical curve (sol;(XFe2O3)Il = 1.110 x 10–3. This regularincrease in Fe2O3 contents fits a model of Fe3+ substitutionfor Al on two independent sites in sillimanite and a coupledsubstitution of for Fe2+ Ti on two sites in ilmenite. Sillimaniteand ilmenite are behaving as ideal solutions over the compositionalrange 0 < XFe2SIO3 < 0.013 in sillimanite and 0 < XFe2O3< 0.15 in ilmenite. Equations have been derived for expressing the variation inFe2O3 content of sillimanite associated with quartz and ilmeniteor hematite as a function of pressure, temperature, and Fe2O3content of the oxide minerals. For example, the Fe2O3 contentof a sillimanite with 1.5 mole per cent Fe2SiO3 coexisting withTi-free hematite is calculated to decrease 11 per cent witha 5 kb increase in pressure. The rate of increase with temperatureof the Fe2O3 content of sillimanite is greater in hematite-bearingassemblages than in ilmenite-bearing assemblages.  相似文献   

17.
Activity diagrams in the system KAlSi3O8-NaAlSi3O8-Al2SiO5-SiO2-H2O-HClhave been calculated in terms of aK+/aH+ and aN+/aH+ from existingexperimental data. They show the effect of temperature, pressure,and aH2O on the stability fields of the alkali feldspars, micas,and aluminium silicate. These activity diagrams are useful in revealing the bufferingcapacity of mineral assemblages and the chemical potential gradientsestablished by changes in T, P, aH2O, and mineral assemblage.An analysis of mineral paragenesis in terms of these diagramssuggests that mosaic equilibrium, allowing limited metasomatismand internal buffering of chemical potentials, best describemetamorphic systems. Thus the dehydration reaction: muscovite+quartz=K-feldspar+Al2SiO5+H2O which is most important in closed systems, probably fails todescribe in detail the mechanism of natural muscovite decomposition.Rather the decomposition of muscovite is more likely representedby ionic reactions. The replacement of muscovite by feldspar: muscovite+6 SiO2+2 K+=3 K-feldspar+2 H+ muscovite+6 SiO2+3 Na+=3 Albite+K++2 H+ is favored at high temperature and low pressure, and may accountfor the crystallization of some feldspars in metamorphic rocks.The reaction involving aluminium silicate replacement of muscovite: 2 muscovite+2 H+=3 Al2SiO5+3 SiO2+3 H2O+2 K+ is favored at high temperature and pressure and low aH2O, andcould contribute to the development of the aluminium silicates.It is concluded that both activity diagrams and AKNa projectionsshould be used together to more completely evaluate mineralparagenesis in terms of mosaic equilibria.  相似文献   

18.
Distribution of Ferric Iron in some Upper-Mantle Assemblages   总被引:16,自引:5,他引:11  
The distribution of ferric iron among the phases of upper-mantlerocks, as a function of pressure (P), temperature (T) and bulkcomposition, has been studied using 57Fe Mssbauer spectroscopyto determine the Fe3+/Fe ratios of mineral separates from 35peridotite and pyroxenite samples. The whole-rock Fe3+ complementof a peridotite is typically shared approximately evenly amongthe major anhydrous phases (spinel and/or garnet, orthopyroxeneand clinopyroxene), with the important exception of olivine,which contains negligible Fe3+. Whole-rock Fe3+ contents areindependent of the T and P of equilibration of the rock, butshow a well-defined simple inverse correlation with the degreeof depletion in a basaltic component. Fe3+ in spinel and inboth pyroxenes from the spinel Iherzolite facies shows a positivecorrelation with temperature, presumably owing to the decreasein the modal abundance of spinel. In garnet peridotites, theFe3+ in garnet increases markedly with increasing T and P, whereasthat in clinopyroxene remains approximately constant. The complexnature of the partitioning of Fe3+ between mantle phases resultsin complicated patterns of the activities of the Fe3+ -bearingcomponents, and thus in calculated equilibrium fO2, which showlittle correlation with whole-rock Fe3+ or degree of depletion.Whether Fe3+ is taken into account or ignored in calculatingmineral formulae for geothermobarometry can have major effectson the resulting calculated T and P. For Fe-Mg exchange geothermometers,large errors must occur when applied to samples more oxidizedor reduced than the experimental calibrations, whose fO2 conditionsare largely unknown. Two-pyroxene thermometry is more immuneto this problem, and probably provides the most reliable P—Testimates. Accordingly, the convergence of P—T valuesderived for a given garnet peridotite assemblage may not necessarilybe indicative of mineral equilibrium. The prospects for thecalculation of accurate Fe3+ contents from electron microprobeanalyses by assuming stoichiometry are good for spinel, uncertainfor garnet, and distinctly poor for pyroxenes. KEY WORDS: mantle; oxidation; partitioning; peridotite; thermobarometry *Corresponding author. Present address: School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, B.C., V8W 2Y2, Canada  相似文献   

19.
Phase Relations on the Actinolite-Pargasite Join   总被引:1,自引:0,他引:1  
Phase relations along the join Ca2Mg4Fe2+Si8O22 (OH)2 (Actinolite)-NaCa2Mg3?2Fe0?82+AlSi6Al2O22(OH)2 (Pargasite) have been studied at PH2O = 1 kb andthe oxygen fugacities defined by the iron-wustite(IW) buffer. Actinolite and bornblende are separated by a solvus and thefield of actinolite+hornblende+vapor is present in the regionbetween Ac85Pa15 and Ac55 Pa45 at 680 ?C. Complete miscibilityis achieved at 720 ?C. At temperatures higher than the solvusthere is a continuous solid solution series between the twoend members. The stability field of amphibole solid solutiongradually increases with increasing pargasite content in actinolite.The phase assemblages at temperatures higher than those of asolid solution series between the two end members change withincreasing pargasite content in the bulk composition as follows;Act+Cpx+Qz+V, ActHbl+Cpx+Opx+Qz+V, Hbl+Cpx+Opx+Pl+V and Hbl+Cpx+Pl+Ol+V. In comparison with the Fe-free system, the extent of the miscibilitygap between actinolite and hornblende is reduced by an increasein the Fe2+ content. The present study should provide an adequatebasis for the interpretation of actinolite-hornblende pairsin metamorphic rocks.  相似文献   

20.
ROSE  N. M.; BIRD  D. K. 《Journal of Petrology》1987,28(6):1193-1218
Layered gabbros at Nordre Aputit?q and Kruuse Fjord were emplacedduring extensional tectonism that led to the formation of theNorth Atlantic basin in the Early Tertiary. Sub-solidus reactionsbetween the gabbros and hydrothermal fluids formed superimposedalteration assemblages in fractures, cavities, and the adjacentgabbros. The earliest secondary minerals are Ca-Al amphibole+ clinopyroxene + biotite ? plagioclase that form thin veinsor porous pegmatitic masses. These minerals are crosscut, overgrownor partially replaced by one or more generations of prehniteand epidote bearing assemblages associated with filling of thefractures and cavities, and with extensive wall rock albitization. Wide variations in the partitioning of Fe3+ and Al between coexistingprehnite and epidote solid solutions occur in these alteredgabbros. The partitioning data define distinct clusters in termsof associated mineralogy and paragenetic relations. This, togetherwith prehnite and epidote compositions from active geothermalsystems, are used to evaluate the thermodynamic properties ofthe intercrystalline exchange reaction:When compared to thecompositions of prehnite and epidote in the Nordre Aputit?qand Kruuse Fjord intrusions, it is concluded that the latestand lowest temperature generations of prehnite and epidote displaydisequilibrium partitioning of Fe3+ and Al, manifested by theoccurrence of prehnite that is relatively enriched in Fe3+ Thermodynamic analysis of phase relations in the system Na2O-CaO-Al2O3-Fe2O3-FeO-SiO2-H2O-HClis used to determine local equilibrium constraints on Fe3+-Alsubstitution in prehnite and epidote. It appears that parageneticand compositional relations of prehnite and epidote are sensitiveindicators of local fluctuations in fluid composition and temperature.The complex magmatic and structural history of the gabbros atNordre Aputit?q relative to Kruuse Fjord is considered to beresponsible for the differences in mineral paragenesis and compositionsof prehnite and epidote within these intrusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号