首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970–1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.  相似文献   

2.
Central Italy is an active tectonic area that has been recently studied by several regional mantle, Pn and SKS, studies which revealed the presence of a strong regional anisotropy. In this paper, we present the first petrophysical results on the only mantle xenoliths from Central Italy, which place new constraints on the upper mantle structures of this region. The Torre Alfina mantle xenoliths are very small in size, from few millimetres to about 1.5 cm. They are mainly dunites and harzburgites, with subordinate lherzolites and wehrlites. Since olivine and spinel are always present, they should have crystallised in the spinel-bearing lherzolite field. Their mineralogical composition is ol+spl±opx±cpx. Both olivines and pyroxenes are present as porphyroclasts and as neoblasts. The xenoliths show different degrees of recrystallization. Geothermobarometry on these xenoliths give a temperature range of 1040±40 °C and a pressure estimate of about 1.5 GPa, corresponding to 50 to 60 km depth. Previous seismic studies have estimated the Moho to be at 20 to 25 km in this region, hence the xenoliths come from a hot mantle, probably asthenospheric, below a lithosphere of about 25 to 40 km in thickness below the Moho. We measure the crystallographic preferred orientation (CPO) of olivines and pyroxenes using a SEM and the Electron Back Scattered Diffraction (EBSD) technique. The CPO shows all three axes of olivine are tightly clustered: [100] axis is typically more tightly clustered than [010] and [001] is the most widely distributed axis. The fabric strength expressed by the integral J index, varies from 4.5 to 25.9, and decreases with the degree of recrystallization. We use CPO data to calculate anisotropic seismic properties of the xenoliths. They are very homogenous and probably statistically representative of the mantle below the Torre Alfina area. Vp ranges from 8.4 to 9.1 km/s, Vs1 from 4.8 to 5.0 km/s. The seismic anisotropy is more variable; AVp ranges from 9.8% to 19.3% and AVs from 7.3% to 13.4%. The majority of the xenoliths display an orthorhombic seismic symmetry, but xenoliths with a transverse isotropic behaviour have also been observed.

We consider four geodynamic models for the source region of the xenoliths (extension, shear, upwelling, slab tilted), defined by different orientations of the structural reference frame, and we calculated for each model the variation of the seismic properties with temperature, pressure and volume fraction of orthopyroxene. After comparing this variation of calculated seismic parameters with seismic observations from the region, we form the hypothesis that the xenoliths come from either an extensional tectonic zone (lineation X and foliation plane XY horizontal) or transcurrent shear zone (lineation X horizontal and foliation plane XY vertical) and that the mantle beneath Torre Alfina is composed by 70% olivine and 30% orthopyroxene forming an anisotropic layer of about 160 or 110 km in thickness, respectively.  相似文献   


3.
We examined seven ultramafic xenoliths from 1~3 Ma alkali olivine basalt reefs near the Eurasian continent and one sample of the host alkali basalt to identify the mantle wedge material and to constrain the origin and evolution of mantle beneath SW Japan. Six xenoliths are from Kurose and one xenolith is from Takashima, northern part of the Kyushu islands, SW Japan. The Sr and Nd isotopic ratios vary from 0.70416 to 0.70773 and from 0.51228 to 0.51283, respectively. The Kurose and Takashima xenoliths have higher Sr isotopic ratios and lower Nd isotopic ratios than those of the peridotite xenoliths from the other arc settings such as Simcoe and NE Japan.

The Kurose xenoliths have less radiogenic Os isotopic ratios (187Os/188Os = 0.123–0.129) than the primitive upper mantle (PUM) estimate and limited variation compared to the other arc xenoliths. Their Os isotope compositions are rather similar to the ultramafic xenoliths from NE and east China. In addition, the samples of the Kurose and Takashima xenoliths plot along a mixing line between ultramafic xenoliths from SE and NE China and a slab component in Sr–Nd–Os isotopic space. Our results suggest that fragments of continental lithospheric mantle from the China craton may exist beneath Kurose and Takashima after the Sea of Japan expansion when the Japanese islands were rifted away from the Eurasian continent during Miocene. Later magmatism due to subduction of the Philippine Sea Plate beneath the SW Japan arc around 15 Ma ago may have introduced fluids or melts derived from slab component, interpreted to be oceanic sediments rather than altered oceanic crust, that possibly modified the original composition of the lithospheric mantle sampled by the peridotite xenoliths from Kurose and Takashima.  相似文献   


4.
Deformation microstructures, including lattice-preferred orientations (LPOs) of olivine, enstatite, and diopside, in mantle xenoliths at Shanwang, eastern China, were studied to understand the deformation mechanism and seismic anisotropy of the upper mantle. The Shanwang is located across the Tan-Lu fault zone, which was formed due to the collision between the Sino-Korean and South China cratons. All samples are spinel lherzolites and wehrlites, and LPOs of minerals were determined using scanning electron microscope/electron backscattered diffraction. We found two types of olivine LPO: type-B in spinel lherzolites and type-E in wehrlites. Enstatite showed two types of LPO (types BC and AC), and diopside showed four different types of LPO. Observations of strong LPOs and numerous dislocations in olivine suggest that samples showing both type-B and -E LPOs were deformed in dislocation creep. The seismic anisotropy of the P-wave was in the range of 2.2–11.6% for olivine, 1.2–2.3% for enstatite, and 2.1–6.4% for diopside. The maximum seismic anisotropy of the shear wave was in the range 1.93–7.53% for olivine, 1.53–2.46% for enstatite, and 1.81–6.57% for diopside. Furthermore, the thickness of the anisotropic layer was calculated for four geodynamic models to understand the origin of seismic anisotropy under the study area by using delay time from shear wave splitting, and S-wave velocity and anisotropy from mineral LPOs. We suggest that the seismic anisotropy under the study area can be most likely explained by two deformation modes that might have occurred at different times: one of deformed lherzolites with a type-B olivine LPO by lateral shear during/after the period of the Mesozoic continental collision between the Sino-Korean and South China cratons; and the other deformed the wehrlites with a type-E olivine LPO by horizontal extension during the period of change in absolute plate motion in relation to the westward-subducting Pacific plate.  相似文献   

5.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   

6.
Volcanic activity has produced Late Tertiary and Quaternary cinder cones and flows between the Snake River Plain, U.S.A. and the Yukon Territory, Canada. The rock types include basanites, alkali olivine basalts, high-iron basalts, hawaiites, ankaramites, nephelinites, and olivine tholeiites. The alkali olivine basalts, basanites and hawaiites sampled are chemically similar to rocks from the mid-Atlantic islands. Associated with the volcanic rocks are xenoliths of ultramafic rocks, gabbros, granites and granulites.Seismic data indicate that the Moho throughout the region dips eastward at a very shallow angle. The low velocity zone has been located beneath southern British Columbia and displays a topographic high trending northwest-southeast. The nephelinite was erupted from near the crest of this high with less undersaturated lavas erupted from along its flanks.The suite of ultramafic xenoliths spans a greater variety of rock types than can be generated by maximum amounts of partial melting of a uniform source material to produce the lavas in the region. Calculated residual olivine compositions in equilibrium with the magmas at low velocity zone depths and liquidii temperatures are more iron-rich than the typical lherzolite xenolith olivine. This suggests that the residua from the partial melting episodes which produced the volcanic rocks are different from the upper mantle lid above the low velocity zone as represented by the ultramafic xenoliths.  相似文献   

7.
Deep-seated meta-igneous xenoliths brought to the surface by alkali basaltic magmas from the Kerguelen Islands reveal that basaltic magmas have intruded the upper mantle throughout their geological evolution. These xenoliths record volcanic activity associated with their early South East Indian Ridge location and subsequent translation to an intraplate setting over the Kerguelen Plume. The meta-igneous xenoliths sample two distinctive geochemical episodes: one is tholeiitic transitional and one is alkali basaltic. Geothermobarometry calculations provide a spatial context for the rock type sequence sampled and for interpreting petrophysical data. The garnet granulites equilibrated over a pressure range of 1.15 to 1.35 GPa and the garnet pyroxenite at 1.8 GPa. Ultrasonic measurements of compressional wave speed VP have been carried out at pressures up to 1 GPa, and densities measured for representative samples of meta-igneous xenoliths and for a harzburgite that represents the peridotitic mantle. VP and density have also been calculated using modal proportions of minerals and appropriate elastic properties for the constituent minerals. Calculated and measured VP agree well for rock types with microstructures not complicated by kelyphitic breakdown of garnet and/or pervasive grain-boundary cracking. Pyroxene granulites have measured and calculated VP within the range 7.37-7.52 km/s; calculated velocities for the garnet granulites and pyroxenites range from 7.69 to 7.99 km/s, whereas measured and calculated VP for a mantle harzburgite are 8.45 and 8.29 km/s respectively. The seismic structure observed beneath the Kerguelen Islands can be explained by (1) a mixture of underplated pyroxene granulites and ultramafic rocks responsible for the 2-3 km low velocity transitional zone below the oceanic layer 3, (2) varying proportions of granulites and pyroxenites in different regions within the upper mantle producing the lateral heterogeneities, and (3) intercalation of the granulites and pyroxenites throughout the entire upper mantle column, along with elevated temperatures, accounting for the relatively low mantle velocities (7.70-7.95 km/s).  相似文献   

8.
We present results of field, microstructural, and textural studies in the Twin Sisters ultramafic complex (Washington State) that document localized deformation associated with the formation of dunite channels in naturally deformed upper mantle. The Twin Sisters complex is a well-exposed, virtually unaltered section of upper mantle lithosphere comprised largely of dunite and harzburgite (in cm- to m-scale primary compositional layers), and variably deformed orthopyroxenite and clinopyroxenite dikes. A series of ∼N–S striking, m-scale dunite bands (typically with porphyroclastic texture) occur throughout the study area and crosscut both the primary compositional layers and older orthopyroxenite dikes. Structural relationships suggest that these dunite bands represent former zones of channelized melt migration (i.e., dunite channels), and that strain localization was associated with melt migration. Early formed orthopyroxenite dikes are either absent within cross-cutting dunite channels, or have been displaced within channels relative to their position in the adjacent host rocks. These pre-existing orthopyroxenite dikes provide strain markers illustrating that displacement was localized primarily along channel margins, which have opposite senses of shear. In all cases where offsets were noted, the center of the channel was moved southward relative to its margins. Material flow and strain was, therefore, partitioned within channels during melt migration, and dunite channels did not accommodate net shear displacement of the adjacent host peridotites. Primary compositional layers adjacent to dunite channels document opposite rotation of olivine [100] crystallographic axes on either side of channel margins, consistent with the kinematic reversal inferred from offset markers at the outcrop scale, suggesting that the formation of dunite channels also induced host rock deformation proximal to channels. Strain localization that was focused at the margin of the bands was likely facilitated by melt-induced weakening. Channelized movement within the dunite bands may have resulted from matrix compaction within channels, pressure gradients during melt migration, or a combination of these processes during coaxial deformation.  相似文献   

9.
High seismic Vp velocity anomalies (8.7–9.0 km s− 1) have long been known about in regions of the uppermost mantle of the Siberian craton, often in association with kimberlite fields. Laboratory measurement of seismic properties of five xenoliths, three peridotites and two eclogites, from the Udachnaya kimberlite under confining pressures up to 600 MPa were extrapolated to uppermost mantle PT conditions of 1500 MPa and 500 °C, however none of the velocities are high enough to explain the observations. Eclogites or peridotites are commonly considered to be the source of anomalous high velocities. We prefer a peridotitic source to an eclogitic source due to the unusual chemistry and regional uniformity of eclogitic garnets required, maximum velocity limitations on laboratory measurements of seismic properties of natural eclogites, and purported abundance of eclogites in the lithosphere. Alternatively, a highly depleted peridotite, such as dunite or harzburgite, can produce velocities high enough to match observations. Olivine petrofabrics in most peridotites, including the three peridotites used in this study, are great enough to produce the observed high velocities provided olivine petrofabrics are continuous enough and correctly oriented to be seismically detectable and the modal proportion of olivine is high. There have been suggestions by other authors that the Siberian upper mantle is highly depleted and that a lithosphere-scale shear zone exists, which may have acted to organize fabrics into segments large enough for detection. Anomalously high Vp–Vs velocity ratios of greater than 1.8 are expected parallel to the olivine [100] maxima required to be present in a high-velocity olivine-dominated upper mantle. Vp–Vs velocity ratios can serve as a means of inferring large-scale anisotropy when limited seismic data are available, as in Siberia.  相似文献   

10.
Two suites of ultramafic xenoliths have been found in ultrapotassic lavas from the 0.9 Ma old Torre Alfina volcano sited at the northern border of the Vulsinian district (Central Italy). One group of Xenoliths consists of spinel-bearing lherzolites, harzburgites, minor wherlites and dunites with a maximum size of 3–4 cm. Some samples contain discrete laths of phlogopite. A second class consists of phlogopite-rich, glass-bearing peridotites. The first suite displays textural characteristics such as triple points, deformed olivine with well developed kink banding and porphyroclastic textures indicating equilibration at high pressure. Pressure estimates give values in the range 1.3–2.5 GPa, corresponding to mantle depths in the area, where the present-day Moho is about 25 km deep. Equilibration temperatures have been estimated in the range between 950–1000°C. The chemical composition of some phases, such as the very high Fo contents of olivines (up to Fo94 in harzburgites), Mg content of orthopyroxenes and Cr/Cr+Al ratios of clinopyroxenes and spinels, suggest that these xenoliths represent peridotites which suffered different degrees of partial melting before being incorporated into the Torre Alfina magma. On the other hand, the occurrence of phlogopite speaks for metasomatic events. The phlogopite-rich, glass-bearing xenoliths consist of phlogopite, olivine, clinopyroxene, rare orthopyroxene and glass. Apatite is the most common accessory. Olivine is present in both euhedral and strained crystals. A few relics of protogranular textures are also observed. Textural and chemical evidence suggests that these xenoliths represent mica-rich peridotites which have undergone phlogopite breakdown during rapid rise to the surface with the development of a K-rich liquid which reacted with mafic phases producing a rapid growth of olivine and, to a lower extent, pyroxene. Originally, these xenoliths may have represented intensively metasomatized upper mantle. However, a cumulitic origin from previous potassic magmatic events cannot be excluded. The host lavas have compositions intermediate between high-silica lamproite and Roman-type ultrapotassic rock. They have high abundances of incompatible elements and radiogenic Sr, coupled with high Mg content, MgO/CaO, Ni and Cr. These features support a genesis in a residual upper mantle which has suffered partial melting with the extraction of basaltic liquids, followed by metasomatic events which caused an enrichment in incompatible elements and radiogenic Sr. The presence of mantle-derived ultramafic xenoliths in the torre Alfina lavas testifies for a rapid uprise of the magma which reached the surface without suffering fractional crystallization and significant interaction with the upper crust. Accordingly, the Torre Alfina lavas represent an unique example of primitive potassic liquid in Central Italy.  相似文献   

11.
Fluid inclusions in mantle xenoliths   总被引:23,自引:0,他引:23  
Fluid inclusions in olivine and pyroxene in mantle-derived ultramafic xenoliths in volcanic rocks contain abundant CO2-rich fluid inclusions, as well as inclusions of silicate glass, solidified metal sulphide melt and carbonates. Such inclusions represent accidentally trapped samples of fluid- and melt phases present in the upper mantle, and are as such of unique importance for the understanding of mineral–fluid–melt interaction processes in the mantle. Minor volatile species in CO2-rich fluid inclusions include N2, CO, SO2, H2O and noble gases. In some xenoliths sampled from hydrated mantle-wedges above active subduction zones, water may actually be a dominant fluid species. The distribution of minor volatile species in inclusion fluids can provide information on the oxidation state of the upper mantle, on mantle degassing processes and on recycling of subducted material to the mantle. Melt inclusions in ultramafic xenoliths give information on silicate–sulphide–carbonatite immiscibility relationships within the upper mantle. Recent melt-inclusion studies have indicated that highly silicic melts can coexist with mantle peridotite mineral assemblages. Although trapping-pressures up to 1.4 GPa can be derived from fluid inclusion data, few CO2-rich fluid inclusions preserve a density representing their initial trapping in the upper mantle, because of leakage or stretching during transport to the surface. However, the distribution of fluid density in populations of modified inclusions may preserve information on volcanic plumbing systems not easily available from their host minerals. As fluid and melt inclusions are integral parts of the phase assemblages of their host xenoliths, and thus of the upper mantle itself, the authors of this review strongly recommend that their study is included in any research project relating to mantle xenoliths.  相似文献   

12.
We present evidence for a thick (∼100 km) sequence of cogenetic rocks which make up the root of the Sierra Nevada batholith of California. The Sierran magmatism produced tonalitic and granodioritic magmas which reside in the Sierra Nevada upper- to mid-crust, as well as deep eclogite facies crust/upper mantle mafic–ultramafic cumulates. Samples of the mafic–ultramafic sequence are preserved as xenoliths in Miocene volcanic rocks which erupted through the central part of the batholith. We have performed Rb-Sr and Sm-Nd mineral geochronologic analyses on seven fresh, cumulate textured, olivine-free mafic–ultramafic xenoliths with large grainsize, one garnet peridotite, and one high pressure metasedimentary rock. The garnet peridotite, which equilibrated at ∼130 km beneath the batholith, yields a Miocene (10 Ma) Nd age, indicating that in this sample, the Nd isotopes were maintained in equilibrium up to the time of entrainment. All other samples equilibrated between ∼35 and 100 km beneath the batholith and yield Sm-Nd mineral ages between 80 and 120 Ma, broadly coincident with the previously established period of most voluminous batholithic magmatism in the Sierra Nevada. The Rb-Sr ages are generally consistent with the Sm-Nd ages, but are more scattered. The 87Sr/86Sr and 143Nd/144Nd intercepts of the igneous-textured xenoliths are similar to the ratios published for rocks outcroping in the central Sierra Nevada. We interpret the mafic/ultramafic xenoliths to be magmatically related to the upper- and mid-crustal granitoids as cumulates and/or restites. This more complete view of the vertical dimension in a batholith indicates that there is a large mass of mafic–ultramafic rocks at depth which complement the granitic batholiths, as predicted by mass balance calculations and experimental studies. The Sierran magmatism was a large scale process responsible for segregating a column of ∼30 km thick granitoids from at least ∼70 km of mainly olivine free mafic–ultramafic residues/cumulates. These rocks have resided under the batholith as granulite and eclogite facies rocks for at least 70 million years. The presence of this thick mafic–ultramafic keel also calls into question the existence of a “flat” (i.e., shallowly subducted) slab at Central California latitudes during Late Cretaceous–Early Cenozoic, in contrast to the southernmost Sierra Nevada and Mojave regions. Received: 27 December 1997 / Accepted: 11 June 1998  相似文献   

13.
Henry O.A. Meyer 《Earth》1977,13(3):251-281
The importance of ultramafic and eclogitic xenoliths in kimberlite as representing the rocks and minerals of the upper mantle has been widely perceived during the last decade. Studies of the petrology and mineral chemistry of these mantle fragments as well as of inclusions in diamond, have led to significant progress in our understanding of the mineralogy and chemistry of the upper mantle. For example, it is now known that textural differences in the ultramafic xenoliths (lherzolite, harzburgite, pyroxenite and websterite) are partially reflected in chemical differences. Thus xenoliths that display a ‘fluidal’ texture, indicative of intense deformation are less depleted in Ca, Al, Na, Fe and Ti than those xenoliths in which granular textures are predominant. It is believed this relative depletion may indicate the sheared (fluidal texture) xenoliths are representative of primary, undifferentiated mantle. This material on partial melting would produce ‘basaltic-type’ material, and leave a residuum whose chemistry and mineralogy is reflected by the granular xenoliths.Also present in kimberlite are large single phase xenoliths that may be either one single crystal (xenocryst, megacryst) or an aggregate of several crystals of the same mineral (discrete xenolith, or discrete nodule). These large single phase samples consist of similar minerals to those occurring in the ultramafic xenoliths but chemically they are distinct in being generally more Fe-rich. The relation between these xenocrysts to their counterparts in the ultramafic xenoliths is unknown. Also unknown, at the present time, is the exact relation between diamond and kimberlite. Evidence obtained from study of the mineral inclusions in diamond suggests that diamond forms in at least two chemically distinct environments in the mantle; one eclogitic, the other, ultramafic. Interestingly, this suggestion is true for diamonds from worldwide localities.The mineral-chemical results of studies on xenoliths and inclusions in diamond have been convincingly interpreted in the light of experimental studies. It is now possible based on several different geothermometers and barometers to determine relatively reasonable physical conditions for the final genesis of many of these mantle rocks. For the most part the final equilibration temperatures range between 1000 and 1400°C and pressure in the region 100–200 km. These conditions are consistent with an upper mantle origin. Future studies will undoubtedly attempt to more concisely, and accurately, define these conditions, as well as understand better the chemical and spatial relationship of the rock-types in the mantle.  相似文献   

14.
A suite of ultramafic mantle xenoliths from the TUBAF and EDISONseamounts in the Bismarck Archipelago NE of Papua New Guineawas sampled by video-guided grab. The xenoliths, which weretransported to the sea floor by rift-related, Quaternary trachybasalts,mainly represent part of the oceanic mantle. Mineral zoningin peridotite xenoliths testifies to slow cooling after mantleformation at a mid-ocean ridge. Cooling rates in the range of1°C/Ma were calculated from zoning of Ca in olivine usingthe Lasaga algorithm. Subsequent to this cooling, a strong metasomatismaffected the mantle peridotites when metasomatic agents emergedfrom the underlying slab of a subduction zone, which was stalledabout 15 my ago. This resulted in the formation of orthopyroxene-,clinopyroxene-, phlogopite- and hornblende-bearing veins crosscuttingspinel peridotites and olivine clinopyroxenites, as well aspervasively metasomatized plagioclase lherzolites. The metasomaticxenoliths reveal strong chemical disequilibria between the metasomaticminerals and the adjacent, unaltered host rock minerals, whichare especially prominent in the veined samples. Temperaturesduring the metasomatic overprint, estimated using spinel–olivinethermometry, range between 660 and 950°C. Oxygen barometryreveals an elevated oxygen fugacity, with  相似文献   

15.
We found extremely high-Mg# (=Mg/(Mg + total Fe) atomic ratio) ultramafic rocks in Avacha peridotite suite. All the high-Mg# rocks have higher modal amounts of clinopyroxene than ordinary Avacha peridotite xenoliths, and their lithology is characteristically heterogeneous, varying from clinopyroxenite through olivine websterite to pyroxene-bearing dunite. The Mg# of minerals is up to 0.99, 0.98 and 0.97 in clinopyroxene, orthopyroxene and olivine, respectively, decreasing progressively toward contact with dunitic part, if any. The petrographical feature of pyroxenes in the high-Mg# pyroxenite indicates their metasomatic origin, and high LREE/HREE ratio of the metasomatic clinopyroxene implies that the pyroxenites are the products of reaction between dunitic peridotites and high-Ca, silicate-rich fluids. The lithological variation of the Avacha high-Mg# pyroxenites from clinopyroxenite to olivine websterite resulted from various degrees of fluid-rock reaction coupled with fractional crystallization of the high-Ca fluids, which started by precipitation of high-Mg# clinopyroxene. Such fluids were possibly generated originally at a highly reduced serpentinized peridotite layer above the subducting slab. The fluids can reach the uppermost mantle along a shear zone as a conduit composed of fine-grained peridotite that developed after continent-ward asthenospheric retreats from the mantle wedge beneath the volcanic front. The fluids are incorporated in mantle partial melts when the magmatism is activated by expansion of asthenosphere to mantle wedge beneath the volcanic front.  相似文献   

16.
华北克拉通上地幔变形及其动力学意义   总被引:1,自引:0,他引:1       下载免费PDF全文
赵亮  郑天愉 《地质科学》2009,44(3):865-876
华北克拉通从稳定到破坏的演化过程对有关地球动力学的经典理论提出了挑战,研究其独特的演化历史是固体地球科学研究的一项重要内容。上地幔矿物晶体的各向异性记录了上地幔发生构造变形的信息,研究上地幔地震波各向异性能够揭示现今和构造历史时期所发生的构造运动。本文总结了近年来作者在华北克拉通地区所进行的高密度、覆盖广泛的地震波横波分裂观测研究结果。横波分裂的快轴方向与绝对板块运动方向的不一致,以及横波分裂参数快速的空间变化特征表明了华北克拉通的SKS横波分裂主要反映上地幔的变形。观测结果表明:鄂尔多斯块体保留了克拉通较弱的各向异性特征,其西端体现了元古代克拉通拼合的变形特征; 中新生代华北克拉通破坏事件以不同的机制主导了华北克拉通中部和东部的上地幔变形,在东部地区北西-南东向的拉张应力作用使得快轴方向平行于拉张方向,而在中部则因受到较厚岩石圈的阻挡使得地幔流动改变了方向,因此造成了北东和北北东向的岩石圈拉张。  相似文献   

17.
We analyze splitting of shear waves recorded during the SVEKALAPKO passive seismic experiment in south-central Finland to study fabrics of the mantle lithosphere of the Precambrian region and thus to bring information into a debate on existence of plate tectonics or its forms in the early stage of continent formation. Geographical variations of the splitting parameters and their distinct dependence on direction of wave propagation through the upper mantle allow us to identify six domains of the central Fennoscandian mantle lithosphere, including the Proterozoic–Archean transition, and to model their fabrics by joint inversion of body wave anisotropic parameters. Fabrics of the Archean mantle lithosphere can be approximated by a peridotite aggregate with lineation a dipping to the NE. On the other hand, anisotropy of the Proterozoic mantle lithosphere is weaker and we model its fabric by the (a, c) foliations dipping to the SE. We present a 3D self-consistent anisotropic model of the Proterozoic and Archean upper mantle along the SW-NE profile in the south-central Finland. Boundaries of inter-growing wedges of the Proterozoic and Archean mantle lithospheres explain the longitudinal and shear wave propagation and polarization, mantle xenolith ages, surface wave tomography and location of the upper mantle reflectors. We interpret the six anisotropic domains as fragments of mantle lithosphere retaining an old fossil olivine fabric which was created before these micro-continents assembled.  相似文献   

18.
吉林双辽七星山新生代玄武岩的特点及其成因探讨   总被引:8,自引:1,他引:8  
本文通过岩石学、稀有元素及同位素地球化学等方面的研究,确认吉林双辽七星山火山是在国内含超镁铁岩包体的火山中唯一喷发于早第三纪的钠质系列碱性玄武岩火山群。该火山群中部三座山所产富橄碧玄岩系幔源原生岩浆直接喷发于地表的产物,并携有大量超镁铁岩包体;东部和西部五座山中的碱性橄榄玄武岩和粒玄岩同样来源于上地幔,但曾经历过一定程度的结晶分异作用。文中根据本区的特点和新的参数,重新计算了原生岩浆的几个判别标准。  相似文献   

19.
We have measured shear wave splitting at three temporary three-component short period stations that were deployed in southern Chile above the subducted Chile Rise spreading centre (Taitao Peninsula and environs). Subduction of the Chile Rise has been occurring beneath South America for at least the past 14 m.y. Previously published models of the ridge subduction posit the existence of ‘slab windows’, asthenosphere-filled gaps between subducted lithosphere segments of the spreading ridge, through which mantle might flow. Our preliminary results include two consistent fast polarization directions of splitting in the study region. Delay times between fast and slow split shear waves average around 1.0 s for all phases (ScS, PcS, SKS, and SKKS) that we measured. Fast-axis azimuths vary systematically among the three stations: near the coast, fast axes are parallel to the spreading ridge segments of the Chile Rise (approximately N-trending). This splitting fast-axis direction probably reflects either along-axis asthenospheric flow or results from the preferential attenuation effects of aligned pockets of melt at the subducted ridge segment. At one inland station above the slab window, we find two splitting fast-axis directions, one parallel to the subducted Chile Rise ridge segments, and a second trending NW–SE. We infer that upper mantle deformation in the vicinity of a well developed slab window is complicated and probably involves two superposed directions of upper mantle deformation. One of these directions (NW–SE) may indicate anomalous flow of asthenospheric mantle in the vicinity of the slab window gap.  相似文献   

20.
地震波各向异性日益成为不可忽视的地质地球物理现象。地球内部不同圈层(地壳、地幔和地核)都存在着地震波各向异性,并表现为不同的规模(小到单矿物和岩石,大到地体甚至上地幔)和强度。通过地震波各向异性可以间接获取岩石圈厚度、地球深部结构与构造变形、地球动力学和地幔对流等信息。主要从地震波各向异性的表现形式、原因及地质地球物理意义等方面对近年来大洋俯冲带、大陆裂谷、地幔转换带和大陆碰撞造山带(青藏高原)等构造环境中的研究成果进行了评述,讨论了各向异性[JP2]研究中需要重视的几个问题:①剪切波分辨率;②矿物组构研究;③其它各向异性成因机制。还强调了各向异性研究与流变学、高温高压岩石物理实验相结合的新方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号