首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing owing to their continuum as well as emission-line properties. The observed peculiar properties of the NLS1s are believed to be as a result of an accretion rate close to the Eddington limit. As a consequence of this, for a given luminosity, NLS1s have smaller black hole (BH) masses compared with normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low-redshift, low-luminosity analogues of high-redshift quasars. We propose that NLS1s may reside in rejuvenated, gas-rich galaxies. We also argue in favour of collisional ionization for production of Fe  ii in active galactic nuclei.  相似文献   

2.
We present the K -band Hubble diagrams ( K – z relations) of submillimetre-selected galaxies and hyperluminous galaxies (HLIRGs). We report the discovery of a remarkably tight K – z relation of HLIRGs, indistinguishable from that of the most luminous radio galaxies. Like radio galaxies, the HLIRG K – z relation at   z ≲ 3  is consistent with a passively evolving ∼3 L * instantaneous starburst starting from a redshift of   z ∼ 10  . In contrast, many submillimetre-selected galaxies are ≳2 mag fainter, and the population has a much larger dispersion. We argue that dust obscuration and/or a larger mass range may be responsible for this scatter. The galaxies so far proved to be hyperluminous may have been biased towards higher AGN bolometric contributions than submillimetre-selected galaxies due to the 60-μm selection of some, so the location on the K – z relation may be related to the presence of the most massive active galactic nucleus. Alternatively, a particular host galaxy mass range may be responsible for both extreme star formation and the most massive active nuclei.  相似文献   

3.
We study the chemical and spectrophotometric evolution of galactic discs with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results with a large body of observational data on present-day galactic discs, including disc sizes and central surface brightness, Tully–Fisher relations in various wavelength bands, colour–colour and colour–magnitude relations, gas fractions versus magnitudes and colours and abundances versus local and integrated properties, as well as spectra for different galactic rotational velocities. Despite the extremely simple nature of our models, we find satisfactory agreement with all those observables, provided that the time-scale for star formation in low-mass discs is longer than for more massive ones. This assumption is apparently in contradiction with the standard picture of hierarchical cosmology. We find, however, that it is extremely successful in reproducing major features of present-day discs, like the change in the slope of the Tully–Fisher relation with wavelength, the fact that more massive galaxies are on average 'redder' than low-mass ones (a generic problem of standard hierarchical models) and the metallicity–luminosity relation for spirals. It is concluded that, on a purely empirical basis, this new picture is at least as successful as the standard one. Observations at high redshifts could help to distinguish between the two possibilities.  相似文献   

4.
5.
6.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

7.
39 galaxies are now known, from follow-up of faint IRAS sources and from submillimetre observations of high-redshift AGN, with far-infrared luminosities >1013 L. 13 of these, which have been found in 60- or 850-μm surveys, form an important unbiased subsample. 12 have been found by comparison of 60-μm surveys with quasar or radio galaxy catalogues, or from infrared surveys with colour selection biased towards AGN, while a further 14 have been found through submillimetre observations of known high-redshift AGN. In this paper I argue, on the basis of detailed modelling of the spectral energy distributions of hyperluminous galaxies with accurate radiative transfer models, and from evidence of high gas mass in several cases, that the bulk of the emission from these galaxies at rest frame wavelengths ≥50 μm is caused by star formation. Even after correction for the effects of lensing, hyperluminous galaxies with emission peaking at rest frame wavelengths ≥50 μm are therefore undergoing star formation at rates >103 M yr−1 and are strong candidates for being primeval galaxies, in the process of a major episode of star formation.  相似文献   

8.
Active galaxies     
In this paper I will review, in an unavoidably incomplete and biased way, the main results obtained by XMM‐Newton on Active Galactic Nuclei. I will then highlight the major issues still open in which XMM‐Newton can still give important contributions, expecially if the observing programs will shift in the future towards more long exposures of single objects and observations of large samples. I will also argue in favour of a legacy program consisting of good S/N observations of a flux‐limited, sizeable sample of AGN. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
We present here the first study of the X-ray properties of an evolutionary sample of merging galaxies. Both ROSAT PSPC and HRI data are presented for a sample of eight interacting galaxy systems, each believed to involve a similar encounter between two spiral discs of approximately equal size. The mergers span a large range in age, from completely detached to fully merged systems.
A great deal of interesting X-ray structure is seen, and the X-ray properties of each individual system are discussed in detail. Along the merging sequence, several trends are evident: in the case of several of the infrared bright systems, the diffuse emission is very extended, and appears to arise from material ejected from the galaxies. The onset of this process seems to occur very soon after the galaxies first encounter one another, and these ejections soon evolve into distorted flows. More massive extensions (perhaps involving up to 1010 M⊙ of hot gas) are seen at the 'ultraluminous' peak of the interaction, as the galactic nuclei coalesce.
The amplitude of the evolution of the X-ray emission through a merger is markedly different from that of the infrared and radio emission, however. Although the X-ray luminosity rises and falls along the sequence, the factor by which the X-ray luminosity increases, relative to the optical, appears to be only about a tenth of that seen in the far-infrared. This, we believe, may well be linked with the large extensions of hot gas observed.
The late, relaxed remnants appear relatively devoid of gas, and possess an X-ray halo very different from that of typical ellipticals, a problem for the 'merger hypothesis', whereby the merger of two disc galaxies results in an elliptical galaxy. However, these systems are still relatively young in terms of total merger lifetime, and they may still have a few Gyr of evolution to go through before they resemble typical elliptical galaxies.  相似文献   

11.
12.
We have studied the correlation among X-ray absorption, optical reddening and nuclear dust morphology in Seyfert 2 galaxies. Two main conclusions emerge: (i) the Balmer decrement and the amount of X-ray absorption are anticorrelated over a wide range of column density,     – the correlation no longer applies to Compton-thick objects     , although they span a comparable range in Balmer decrement; (ii) Compton-thin Seyfert 2s seem to prefer nuclear environments, which are rich in dust on scales of hundreds of parsecs. On the other hand, Compton-thick Seyferts indifferently exhibit 'dust-poor' and 'dust-rich' environments. These results support an extension of the Seyfert unification scenario (as recently proposed by Matt ), where Compton-thick Seyfert 2s are observed through compact 'torii', whereas Compton-thin ones are obscured by dust on much larger scales.  相似文献   

13.
14.
I review success and failure of the hierarchical galaxy formation model. In this scenario, the morphology of galaxies is regulated by the mode of gas accretion and intimately linked to discrete accretion events. Some of the common misconceptions about hierarchical clustering are discussed. The need of a self-consistent approach that incorporates the chemical and dynamical evolution on small scalessimultaneously with the cosmological framework of structure formation on large scales is emphasized. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
16.
We present a sample of 30 wide-angle tailed radio galaxies (WATs) that we use to constrain the jet speeds in these sources. We measure the distribution of the jet-sidedness ratios for the sample, and assuming that the jets are beamed, the jet speeds in the range (0.3–0.7) c are obtained. Whilst the core prominence of the sample, which ought to be a reliable indicator of beaming, shows little correlation with the jet sidedness, we argue that due to the peculiar nature of the WATs, core prominence is unlikely to be a good indicator of beaming in these sources. We further show that if the jets are fast and light, then the galaxy speeds required to bend the jets into C-shapes such as those seen in 0647+693 are reasonable for a galaxy in a merging or recently merged cluster.  相似文献   

17.
18.
We have constructed a family of simple models for spiral galaxy evolution to allow us to investigate observational trends in star formation history with galaxy parameters. The models are used to generate broad-band colours from which ages and metallicities are derived in the same way as the data. We generate a grid of model galaxies and select only those that lie in regions of parameter space covered by the sample. The data are consistent with the proposition that the star formation history of a region within a galaxy depends primarily on the local surface density of the gas but that one or two additional ingredients are required to explain the observational data fully. The observed age gradients appear steeper than those produced by the density dependent star formation law, indicating that the star formation law or infall history must vary with galactocentric radius. Furthermore, the metallicity–magnitude and age–magnitude correlations are not reproduced by a local density dependence alone. These correlations require one or both of the following: (i) a combination of mass dependent infall and metal enriched outflow, or (ii) a mass dependent galaxy formation epoch. Distinguishing these possibilities on the basis of current data is extremely difficult.  相似文献   

19.
Using semi-analytic models of galaxy formation set within the cold dark matter (CDM) merging hierarchy, we investigate several scenarios for the nature of the high-redshift     ) Lyman-break galaxies (LBGs). We consider a 'collisional starburst' model in which bursts of star formation are triggered by galaxy–galaxy mergers, and find that a significant fraction of LBGs are predicted to be starbursts. This model reproduces the observed comoving number density of bright LBGs as a function of redshift and the observed luminosity function at     and     with a reasonable amount of dust extinction. Model galaxies at     have star formation rates, half-light radii,     colours and internal velocity dispersions that are in good agreement with the data. Global quantities such as the star formation rate density and cold gas and metal content of the Universe as a function of redshift also agree well. Two 'quiescent' models without starbursts are also investigated. In one, the star formation efficiency in galaxies remains constant with redshift, while in the other, it scales inversely with disc dynamical time, and thus increases rapidly with redshift. The first quiescent model is strongly ruled out, as it does not produce enough high-redshift galaxies once realistic dust extinction is accounted for. The second quiescent model fits marginally, but underproduces cold gas and very bright galaxies at high redshift. A general conclusion is that star formation at high redshift must be more efficient than locally. The collisional starburst model appears to accomplish this naturally without violating other observational constraints.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号