首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Magnetic topology has been a key to the understanding of magnetic energy re-lease mechanism. Based on observed vector magnetograms, we have determined the three-dimensional (3D) topology skeleton of the magnetic fields in the active region NOAA 10720.The skeleton consists of six 3D magnetic nulls and a network of corresponding spines, fans,and null-null lines. For the first time, we have identified a spiral magnetic null in Sun's corona.The magnetic lines of force twisted around the spine of the null, forming a 'magnetic wreath'with excess of free magnetic energy and resembling observed brightening structures at extra-ultraviolet (EUV) wavebands. We found clear evidence of topology eruptions which are re-ferred to as catastrophic changes of topology skeleton associated with a coronal mass ejection(CME) and an explosive X-ray flare. These results shed new lights on the structural complex-ity and its role in explosive magnetic activity. The concept of flux rope has been widely used in modelling explosive magnetic activity, although their observational identity is rather ob-scure or, at least, lacking of necessary details up to date. We suggest that the magnetic wreath associated with the 3D spiral null is likely an important class of the physical entity of flux ropes.  相似文献   

2.
Galsgaard  K.  Reddy  R. V.  Rickard  G. J. 《Solar physics》1997,176(2):299-325
An ongoing debate is how magnetic energy is released in solar flares, which type of magnetic instabilities are responsible for triggering the energy release, and which magnetic topologies are most likely to host the instabilities. In this connection magnetic reconnection has been a general ingredient, with most of the previous work focussing on 2D reconnection. A natural extension to this is to investigate reconnection in 3D topologies, in particular the behaviour of magnetic nulls and the magnetic topology associated with them. This paper investigates the difference in dynamical behaviour of a numerical domain that either contains a double null-point pair connected by a separator or only a fraction of the separator defined by the null-points. The experiments show that nulls can either accumulate current individually, or act together to produce a singular current collapse along the separator. The implication of these results for the interpretation of coronal data is discussed.  相似文献   

3.
The hemispheric pattern of solar filaments is considered in the context of the global magnetic field of the solar corona. In recent work Mackay and van Ballegooijen have shown how, for a pair of interacting magnetic bipoles, the observed chirality pattern could be explained by the dominant range of bipole tilt angles and helicity in each hemisphere. This study aims to test this earlier result through a direct comparison between theory and observations, using newly developed simulations of the actual surface and 3D coronal magnetic fields over a 6-month period, on a global scale. We consider two key components: (1) observations of filament chirality for the sample of 255 filaments and (2) our new simulations of the large-scale surface magnetic field. Based on a flux-transport model, these will be used as the lower boundary condition for the future 3D coronal simulations. Our technique differs significantly from those of other authors, where the coronal field is either assumed to be purely potential or has to be reset back to potential every 27 days for the photospheric field to remain accurate. In our case we ensure accuracy by the insertion of newly emerging bipolar active regions, based on observed photospheric synoptic magnetograms. The large-scale surface field is shown to remain accurate over the 6-month period, without any resetting. This new technique will enable future simulations to consider the long-term buildup and transport of helicity and shear in the coronal magnetic field over many months or years.  相似文献   

4.
Coronal Flux Rope Equilibria in Closed Magnetic Fields   总被引:1,自引:0,他引:1  
Using a 2.5-dimensional ideal MHD model in Cartesian coordinates,we investigate the equilibrium properties of coronal magnetic flux ropes in background magnetic fields that are completely closed.The background fields are produced by a dipole,a quadrupole,and an octapole,respectively,located below the photosphere at the same depth.A magnetic flux rope is then launched from below the photo-sphere,and its magnetic properties,i.e,the annular magnetic fluxφp and the axial magnetic fluxφz,are controlled by a single emergence parameter.The whole sys-tem eventually evolves into equilibrium,and the resultant flux rope is characterized by three geometrical parameters:the height of the rope axis,the half-width of the rope,and the length of the vertical current sheet below the rope.It is found that the geometrical parameters increase monotonically and continuously with increasing φp and φz:no catastrophe occurs.Moreover,there exists a steep segment in the profiles of the geometrical parameters versus either φp or φz,and the faster the background field decays with height,the larger both the gradient and the growth amplitude within the steep segment will be.  相似文献   

5.
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceas-ing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilib-rium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on re- cent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.  相似文献   

6.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

7.
Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14, 2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associ- ated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.  相似文献   

8.
Inspired by the analogy between the magnetic field and velocity field of incompressible fluid flow, we propose a fluid dynamics approach for computing nonlinear force-free magnetic fields. This method has the advantage that the divergence-free condition is automatically satisfied, which is a sticky issue for many other algorithms, and we can take advantage of modern high resolution algorithms to process the force-free magnetic field. Several tests have been made based on the well-known analytic solution proposed by Low & Lou. The numerical results are in satisfactory agreement with the analytic ones. It is suggested that the newly proposed method is promising in extrapolating the active region or the whole sun magnetic fields in the solar atmosphere based on the observed vector magnetic field on the photosphere.  相似文献   

9.
I. Ballai 《Solar physics》2007,246(1):177-185
Following the observation and analysis of large-scale coronal-wave-like disturbances, we discuss the theoretical progress made in the field of global coronal seismology. Using simple mathematical techniques we determine average values for the magnetic field together with a magnetic map of the quiet Sun. The interaction between global coronal waves and coronal loops allows us to study loop oscillations in a much wider context, i.e. we connect global and local coronal oscillations.  相似文献   

10.
Coronal holes are regions of dominantly monopolar magnetic field on the Sun where the field is considered to be ‘open’ towards interplanetary space. Magnetic bipoles emerging in proximity to a coronal hole boundary naturally interact with this surrounding open magnetic field. In the case of oppositely aligned polarities between the active region and the coronal hole, we expect interchange reconnection to take place, driven by the coronal expansion of the emerging bipole as well as occasional eruptive events. Using SOHO/EIT and SOHO/MDI data, we present observational evidence of such interchange reconnection by studying AR 10869 which emerged close to a coronal hole. We find closed loops forming between the active region and the coronal hole leading to the retreat of the hole. At the same time, on the far side of the active region, we see dimming of the corona which we interpret as a signature of field line ‘opening’ there, as a consequence of a topological displacement of the ‘open’ field lines of the coronal hole. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
回顾了日冕磁的研究历史,介绍了我们首镒提出的日冕磁场的微波诊断方法及其应用的带来的启迪,提出进一步开展日冕磁场及其相关研究的建议。  相似文献   

12.
Using magnetograms and coronal images from two instruments on board the Solar Dynamics Observatory (SDO), we study structure and evolution of a limited number of coronal bright points (CBPs). Our results show that the relation between CBPs and their magnetic footpoints is not simple. In some cases, CBP may appear as a bright portion of a larger loop (with clearly identifiable footpoints), and in some cases, an isolated CBP may develop between magnetic poles, which might not be the closest ones to each other or which might not be involved in the magnetic flux cancellation. We suggest that the magnetic connectivity responsible for formation of isolated coronal bright points is governed by the orientation of the large‐scale magnetic field. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity   总被引:1,自引:0,他引:1  
1 INTRODUCTIONObservations show that the magnetic helicity of solar magnetic structures has a predominantsign in each hemisphere of the Sun, positive in the southern hemisphere and negative in thenorthern, regardless of the solar cycle (Rust, 1994). The magnetic helicity is strictly conservedin the frame of ideal MHD (WOltjer, 1958), and approximately conserved in the presence ofresistive dissipation and magnetic reconnection in a highly conductive plajsma (Taylor, 1974;Berger, 1984; H…  相似文献   

14.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

15.
Three Super Active Regions in the Descending Phase of Solar Cycle 23   总被引:2,自引:0,他引:2  
We analyze the magnetic configurations of three super active regions, NOAA 10484, 10486 and 10488, observed by the Huairou Multi-Channel Solar Telescope (MCST) from 2003 October 18 to November 4. Many energetic phenomena, such as flares (including a X-28 flare) and coronal mass ejections (CMEs), occurred during this period. We think that strong shear and fast emergence of magnetic flux are the main causes of these events. The question is also of great interest why these dramatic eruptions occurred so close together in the descending phase of the solar cycle.  相似文献   

16.
Based on previous work, we investigate the propagation of CMEs in a more realistic plasma environment than the isothermal atmosphere, and find that it is a slightly faster reconnection for flux ropes to break free. The average Alfven Mach number MA for the inflow into the reconnection site has to be at least 0.013 in order to give a plausible eruption (compared to MA = 0.005 for the isothermal atmosphere). Taking MA = 0.1, we find that the energy output and the electric field induced inside the current sheet match the temporal behavior inferred from the energetic, long duration, CME-associated X-ray events. The results indicate that catastrophic loss of equilibrium in the coronal magnetic field provides the most promising mechanism for major solar eruptions, and that the more energetic the eruption is, the earlier the associated flare peaks. The variation of the output power with the background field strength revealed by our calculations implies the poor correlation between slow CMEs and solar flares. Th  相似文献   

17.
Magnetic Energy of Force-Free Fields with Detached Field Lines   总被引:2,自引:0,他引:2  
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be sosmall (β= 10^-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magneticenergy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magneticenergy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of thecorresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as towhether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed tobe detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.  相似文献   

18.
We study a time – latitudinal distribution of CMEs observed by the SOHO spacecraft, their projected speeds and associated magnetic fields, as well as the north – south (N – S) asymmetry of solar surface magnetic fields, and the coronal green line intensities. We have found that (a) there exists an intricate relation between the average projected velocity of CMEs and the mean value of large-scale magnetic fields; (b) there exists a pronounced N – S asymmetry in both the distribution and the number of CMEs; (c) this asymmetry is in favor of the northern hemisphere at the beginning of the cycle, and of the southern hemisphere from 2001 onward, being, in fact, (d) closely related with the N – S asymmetry in the distribution of large-scale magnetic fields and the coronal green line intensities.  相似文献   

19.
堵锦生 《天文学进展》1997,15(2):112-119
简要介绍了在1988-1995年期间冕洞观测研究的主要进展。文中共分五个方面:1.冕洞磁场观测研究的新进展;2.冕洞在太阳活动周不同位相时的规律性;3.冕洞区高速太阳风观测的新结果;4.冕洞加热问题;5.存在问题。  相似文献   

20.
Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other in- struments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole mag- netic structures. By examining the evolutions of the magnetic polarities of sources (17GHz), we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号