首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The oxygen fugacities of 48 mantle xenoliths from 5 localities in southern Siberia (USSR) and Mongolia have been determined. Ferric iron contents of spinels were measured by 57Fe Mössbauer spectroscopy and oxygen fugacities calculated from spinel-olivineorthopyroxene equilibrium. The samples studied represent the major types of upper mantle lithologies including spinel and garnet peridotites and pyroxenites, fertile and depleted peridotites and anhydrous and metasomatized samples which come from diverse tectonic settings. Extensive geochemical and isotope data are also available for these samples. Oxygen fugacity values for most central Asian xenoliths fall within the range observed in peridotite xenoliths from other continental regions at or slightly below the FMQ buffer. However, xenoliths from the Baikal rift zone are the most reduced among xenoliths for which Mössbauer data on spinels are available. They yield fO2 values similar to those in oceanic peridotites and MORBs, while xenoliths in other occurrences have higher fO2s. In general, the continental lithosperic mantle is more oxidized than MORB-like oceanic mantle. This difference seems to be due to incorporation of oxidized material into some parts of the subcontinental mantle as a result of subduction of oceanic crust. Garnet- and garnet-spinel lherzolites from the Baikal rift area have slightly higher oxygen fugacities than shallower spinel lherzolites. Oxygen fugacity does not appear to be correlated with the degree of depletion of peridotites, and its values in peridotites and pyroxenites are very much alike, suggesting that partial melting (at least at moderate degrees) takes place at essentially the same fO2s that are now recorded by the residual material. Modally (amphibole- and phlogopitebearing) and cryptically metasomatized xenoliths from the Baikal rift zone give the same fO2 values as depleted anhydrous peridotites, suggesting that solid-melt-fluid reactions in the continental rift mantle also take place without substantial change in redox state. This is in contrast to other tectonic environments where metasomatism appears to be associated with oxidation.  相似文献   

2.
Using the secondary spinel standard, the authors have precisely measured the Fe3+/∑ Fe values of spinels in mantle xenoliths from Cenozoic basalts in eastern China, and estimated the oxygen fugacities recorded by 63 mantle xenoliths through olivine-orthopyroxene-spinel oxygen barometry. The results indicate that the oxygen fugacities of the lithospheric mantle in eastern China are higher in the south than in the north. Among them, the oxygen fugacity of the North China craton lithospheric mantle is the lowest, similar to that of the oceanic mantle, while that of Northeast and South China are the same as that of the global continental mantle. The variations of mantle redox state in eastern China are mainly controlled by the C-O-H fluids derived from the asthenospheric mantle. According to the mantle oxidation state, it can be concluded that the C-O-H fluids in the lithospheric mantle of eastern China consist mainly of CO2 and minor H2O, but CH4-rich fluids should come from the asthenosphere where the ox  相似文献   

3.
1. Introduction The depth of source of Cenozoic basalts and the genesis of mantle xenoliths in eastern China have been widely discussed by many geoscientists. There were basically two main opinions: one was that the relationship of basalts and the peridotite xenoliths are melt and residues (Cong et al, 1982; Liu et al, 1985; Qiu et al, 1986; E et al, 1987; Chi et al, 1988; Deng et al, 1988), and pyroxenite and gabrro enclaves are accumulation of fractional crystallization (Qiu et al, 1986;…  相似文献   

4.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

5.
由尖晶石相橄榄岩包体中的矿物化学成分,采用新近校准的FFM地质氧逸度计和地质温-压计,计算包体的平衡氧逸度,Δlog(fO2)FMQ=-3.32-0.12,它反映了扬子地块东段大陆岩石圈地幔的氧化还原状态。两种氧逸度计计算结果相差在0.5logfO2单位内。  相似文献   

6.
Pyroxenite xenoliths are relatively common in an alkali trachybasalt in the Glen Innes area in northeastern New South Wales where they coexist with peridotite xenoliths, probably lherzolitic. The pyroxenites vary widely in modal composition. Several pyroxenite xenoliths are characterised by megacrystals of subcalcic clinopyroxene and enstatite, the former comprising a unique group of high pressure pyroxenes in which exsolution of orthopyroxene has proceeded on a megascopic scale. Garnet is absent from all mineral assemblages. Mineralogical and experimental data suggest that the subcalcic clinopyroxene and orthopyroxene megacrystals equilibrated initially at temperatures and pressures of the order of 1350–1450° C and 10–23 kb respectively. The most common xenoliths, namely diopsideorthopyroxene assemblages in which there is evidence of subsolidus annealing, equilibrated at comparable pressures but a significantly lower temperatures (ca. 1000° C). It is suggested that the pyroxenites and associated peridotite xenoliths are samples of essentially unmodified layered upper mantle.  相似文献   

7.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

8.
The Shiribeshi Seamount off northwestern Hokkaido, the Sea of Japan, is a rear-arc volcano in the Northeast Japan arc. This seamount is composed of calc-alkaline and high-K basaltic to andesitic lavas containing magnesian olivine phenocrysts and mantle peridotite xenoliths. Petrographic and geochemical characteristics of the andesite lavas indicate evidence for the reaction with the mantle peridotite xenoliths and magma mixing between mafic and felsic magmas. Geochemical modelling shows that the felsic end-member was possibly derived from melting of an amphibolitic mafic crust. Chemical compositions of the olivine phenocrysts and their chromian spinel inclusions indicate that the Shiribeshi Seamount basalts in this study was derived from a primary magma in equilibrium with relatively fertile mantle peridotites, which possibly represents the mafic end-member of the magma mixing. Trace-element and REE data indicate that the basalts were produced by low degree of partial melting of garnet-bearing lherzolitic source. Preliminary results from the mantle peridotite xenoliths indicate that they were probably originated from the mantle beneath the Sea of Japan rather than beneath the Northeast Japan arc.  相似文献   

9.
Upper mantle xenoliths from Wikieup, AZ, provide abundant evidence for magmatic modification of the uppermost mantle beneath the Transition Zone between the Colorado Plateau and the southern Basin and Range province. Upper mantle lithologies in this xenolith suite are represented by spinel peridotite, wehrlite, plagioclase peridotite, and Al-augite group pyroxenites. Isotopic data for these xenoliths yield relatively uniform values and suggest a common petrogenesis. Al-augite-bearing gabbro and pyroxenite xenoliths from this locality are interpreted to have formed by crystal fractionation processes from parent alkali basalts similar to the Wikieup host basalt. Mineral and whole rock compositions show consistent trends of increasing incompatible element contents (Fe, Al, Ca, Na, K, LIL, and LREE), and decreasing compatible element contents (Mg, Cr, Ni) from spinel peridotite to wehrlite to plagioclase peridotite to the host basalt composition. These compositional trends are interpreted as resulting from varying degrees of magma-mantle wall rock interaction as ascending mafic magmas infiltrated upper mantle peridotite. Small degrees of melt infiltration resulted in slightly modified spinel peridotite compositions while moderate degrees metasomatized spinel peridotite to wehrlite, and the highest degrees metasomatized it to plagioclase peridotite. Whole rock compositions and clinopyroxene, plagioclase, and whole rock isotopic data suggest that the infiltrating magmas were the same as those from which the gabbros and pyroxenites crystallized, and that they were alkalic in composition, similar to the Wikieup host alkali olivine basalts. Relatively uniform 143Nd/144Nd for the mineral separates and whole rocks in spite of the significantly wide range in their 147Sm/144Nd (0.71–0.23 in clinopyroxene) suggests that the Wikieup xenoliths including gabbro, pyroxenite, peridotite, wehrlite, and plagioclase peridotite, are all relatively young rocks formed or metasomatized by a relatively recent magmatic episode. Received: 21 May 1996 / Accepted: 23 December 1996  相似文献   

10.
以中国东部宽甸、汉诺坝和明溪含有幔源包体的新生代玄武岩中的单斜辉石斑(巨)晶为研究对象,采用最新的单斜辉石-熔体平衡温压计对单斜辉石斑(巨)晶-熔体进行了平衡温压计算。结果表明,碱性玄武岩中的单斜辉石斑晶结晶温度和压力高于共生的亚碱性玄武岩中的单斜辉石斑晶,单斜辉石巨晶的结晶温度和压力高于单斜辉石斑晶。这说明碱性玄武岩的形成深度大于亚碱性玄武岩,单斜辉石巨晶是更高压力下的结晶产物,单斜辉石斑晶在岩浆上升的不同深度均有晶出。回归分析表明,尽管携带幔源包体的玄武岩浆上升速度较快,但并不是绝热上升。单斜辉石斑(巨)晶的结晶温压条件与同一地点幔源包体平衡温压条件的对比表明,单斜辉石巨晶和碱性玄武岩中的部分单斜辉石斑(巨)晶的结晶温压大于幔源包体的平衡温压,表明了包体寄主岩浆的来源深度大于包体的深度。因此,幔源包体是寄主岩浆上升途中捕虏的上地幔碎块,而非寄主岩浆形成源区的残留体。  相似文献   

11.
Potassic latite in the transition zone of the Colorado Plateau near Chino Valley, Arizona, contains abundant eclogite and amphibolite xenoliths and minor websterite and pyroxenite xenoliths. One unit contains peridotite xenoliths; analyzed samples have mg-ratios of 68 and 71, 58 and 63 wt% SiO2, and are enriched in potassium and other large ion lithophile (LIL) elements. Rare earth element (REE) patterns are light REE enriched with La greater than 100 times chondritic abundance. The peridotite xenoliths are partly to totally altered, but contain remnant olivine, orthopyroxene, and clinopyroxene; one harzburgite nodule also contains spinel. Mineral compositions from the xenoliths are relatively refractory and similar to those in other spinel peridotite xenoliths from the Colorado Plateau. Geothermometry on olivine-spinel and two-pyroxene pairs indicates equilibration temperatures of less than 800° C for the peridotite nodules. The relatively low temperatures calculated from mineral equilibria are consistent with temperature estimates for other mantle nodules from under the Colorado Plateau.Peridotite xenoliths, mg-ratios, and Ni contents are evidence that the latite magma was derived from mantle peridotite. The potassic nature of the magma probably accounts for its silica-rich composition. The potassic, silica-rich nature of the latite and its enrichment in LREE and other LIL elements are consistent with a source which was metasomatically enriched in these elements either before or during partial melting. The source could have been either spinel or garnet peridotite.  相似文献   

12.
The lithospheric and sublithospheric processes associated with the transition from continental to oceanic magmatism during continental rifting are poorly understood, but may be investigated in the central Main Ethiopian Rift (MER) using Quaternary xenolith-bearing basalts. Explosive eruptions in the Debre Zeyit (Bishoftu) and Butajira regions, offset 20 km to the west of the contemporaneous main rift axis, host Al-augite, norite and lherzolite xenoliths, xenocrysts and megacrysts. Al-augite xenoliths and megacrysts derived from pressures up to 10 kb are the dominant inclusion in these recent basalts, which were generated as small degree partial melts of fertile peridotite between 15 and 25 kb. Neither the xenoliths nor the host basalts exhibit signs of carbonatitic or hydrous (amphibole + phlogopite) metasomatism, suggesting that infiltration of silicate melts resulting in pervasive Al-augite dyking/veining dominates the regional lithospheric mantle. Recent geophysical evidence has indicated that such veining/dyking is pervasive and segmented, supporting the connection of these Al-augite dykes/veins to the formation of a proto ridge axis. Al-augite xenoliths and megacrysts have been reported in other continental rift settings, suggesting that silicate melt metasomatism resulting in Al-augite dykes/veins is a fundamental processes attendant to continental rift development.  相似文献   

13.
东南沿海地区第四纪大陆岩石圈地幔的特征   总被引:5,自引:0,他引:5  
东南沿海地区新生代玄武岩中的橄榄岩包体来自年轻的大陆岩石圈地幔 ,该岩石圈地幔在岩石学、矿物组成、痕量元素以及Sr Nd同位素组成等各方面具有很大差异。这些差异反映了它们来自不同的地幔过程。南海张开与地幔热柱有关 ,南海扩张后第四纪形成的火山岩携至地表的包体更多保留了地幔热柱的信息。橄榄岩包体的矿物成分与深海橄榄岩类似 ,相对贫Opx而富Ol;在痕量元素上 ,表现为强不相容元素的富集 ,其配分模式类似于其寄主岩 ;Nd同位素强烈亏损 ,显示出比MORB源区更亏损的特征。大陆岩石圈地幔经历了来自地幔深处的贫SiO2 熔体的进一步改造。  相似文献   

14.
Carbon abundances have been determined in mantle xenoliths from alkalic basalts and kimberlites and interpreted in terms of the nature and distribution of the C-rich phases. Anhydrous Cr-diopside Group I spinel lherzolites from basalts typically contain 15–50 ppm C, and amphibole-bearing ones have only marginally higher concentrations (40–100 ppm). Carbon abundances in Al-augite Group II pyroxenites are not significantly different from those of the Group I rocks. Although most LREE-depleted lherzolite xenoliths contain less C than enriched samples, there is no clear relationship between abundances of C and the incompatible trace elements.In the suite of deformed cumulate peridotite and dunite xenoliths of the 1801 Kaupulehu flow of the Hualalai volcano, Hawaii, C abundances are clearly related to texture, modal composition, and style of deformation. The most C-rich rocks are wehrlites in which the clinopyroxenes deformed more brittly and thus possess higher fluid inclusion and crack densities than the surrounding olivines.Regardless of their lithology, all xenoliths from kimberlites (including both peridotites and eclogites) are C-rich compared to those from basalts. Most of the C in these xenoliths exists as calcite or carbonaceous matter associated with serpentine veins and was thus probably contributed by the kimberlite host. Primary carbonates are extremely rare in all xenoliths, although occasionally they have been observed as daughter products in fluid inclusions.Although most C exists as inclusions of CO2-rich vapor, condensed carbonaceous matter also appears to occur in all rocks as discrete platy grains and as a film on natural surfaces such as grain boundaries and cracks.  相似文献   

15.
Magnesium isotopic composition of the Earth and chondrites   总被引:3,自引:0,他引:3  
To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ25Mg and ±0.07‰ on δ26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL).Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ25Mg = −0.13 ± 0.05 (2SD) and δ26Mg = −0.26 ± 0.07 (2SD) for global oceanic basalts (n = 110) and δ25Mg = −0.13 ± 0.03 (2SD) and δ26Mg = −0.25 ± 0.04 (2SD) for global peridotite xenoliths (n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ25Mg = −0.15 ± 0.04 (2SD) and δ26Mg = −0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes.Collectively, the Mg isotopic composition of the Earth’s mantle, based on oceanic basalts and peridotites, is estimated to be −0.13 ± 0.04 for δ25Mg and −0.25 ± 0.07 for δ26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.  相似文献   

16.
Upper-mantle xenoliths in Cenozoic basalts of northwestern Spitsbergen are rocks of peridotite (spinel lherzolites) and pyroxenite (amphibole-containing garnet and garnet-free clinopyroxenites, garnet clinopyroxenites, and garnet and garnet-free websterites) series. The upper-mantle section in the depth range 50–100 km is composed of spinel peridotites; at depths of 80–100 km pyroxenites (probably, dikes or sills) appear. The equilibrium conditions of parageneses are as follows: in the peridotites—730–1180 °C, 13–27 kbar, and oxygen fugacity of − 1.5 to + 0.3 log. un.; in the pyroxenites—1100–1310 °C, 22–33 kbar. The pyroxenite minerals have been found to contain exsolved structures, such as orthopyroxene lamellae in clinopyroxene and, vice versa, clinopyroxene lamella in orthopyroxene. The formation temperatures of unexsolved phases in orthopyroxene and clinopyroxene are nearly 100–150 °C higher than the temperatures of the lamellae–matrix equilibrium and the equilibrium of minerals in the rock. The normal distribution of cations in the spinel structure and the equilibrium distribution of Fe2 + between the M1 and M2 sublattices in the orthopyroxenes point to the high rate of xenolith ascent from the rock crystallization zone to the surface. All studied Spitsbergen rock-forming minerals from mantle xenoliths contain volatiles in their structure: OH, crystal hydrate water H2Ocryst, and molecules with characteristic CH and CO groups. The first two components are predominant, and the total content of water (OH– + H2Ocryst) increases in the series olivine → garnet → orthopyroxene → clinopyroxene. The presence of these volatiles in the nominally anhydrous minerals (NAM) crystallized at high temperatures and pressures in the peridotites and pyroxenites testifies to the high strength of the volatile–mineral bond. The possibility of preservation of volatiles is confirmed by the results of comprehensive thermal and mass-spectral analyses of olivines and clinopyroxene, whose structures retain these components up to 1300 °C. The composition of hypothetic C–O–H fluid in equilibrium (in the presence of free carbon) with the underlying mantle rocks varies from aqueous (> 80% H2O) to aqueous–carbonic (~ 60% H2O). The fluid becomes essentially aqueous when the oxygen activity in the system decreases. However, there is no strict dependence of the redox conditions on the depth of formation of xenoliths.  相似文献   

17.
东南沿海地区古近纪大陆岩石圈地幔特征及成因   总被引:3,自引:0,他引:3  
东南沿海地区新生代玄武岩中的橄榄岩包体来自岩石圈地幔 ,上地幔橄榄岩包体的岩石学及地球化学特征都记录了地幔演化的历史。普宁橄榄岩包体斜方辉石含量与太古宙克拉通地幔类似 ,但在矿物学、REE、痕量元素和Sr Nd同位素上又与太古宙岩石圈地幔不同。橄榄岩包体的岩相学、矿物学、REE、痕量元素特征都提供了含H2 O富Si流体交代橄榄岩的证据 ,这种流体可能主要是洋壳物质局部熔融而成。流体交代使橄榄岩富Si,同时富Sr、Pb和强不相容元素等大洋岩石圈物质。这表明普宁大陆岩石圈地幔既保留太古宙岩石圈地幔的特征 ,又具有大洋俯冲地幔的特征 ,它是古老岩石圈地幔向大洋岩石圈地幔转换的一部分 ,这种转换可能是大洋岩石圈与大陆岩石圈地幔相互作用的结果。  相似文献   

18.
M.G. Kopylova  J. Lo  N.I. Christensen 《Lithos》2004,77(1-4):493-510
Modes and compositions of minerals in Slave mantle xenoliths, together with their pressures and temperatures of equilibrium were used to derive model depth profiles of P- and S-wave velocities (Vp, Vs) for composites equivalent to peridotite, pyroxenite and eclogite. The rocks were modeled as isotropic aggregates with uniform distribution of crystal orientations, based on single-crystal elastic moduli and volume fractions of constituent minerals. Calculated seismic wave velocities are adjusted for in situ pressure and temperature conditions using (1) experimental P- and T- derivatives for bulk rocks' Vp and Vs, and (2) calculated P- and T- derivatives for bulk rocks' elastic moduli and densities. The peridotite seismic profiles match well with the globally averaged IASP91 model and with seismic tomography results for the Slave mantle. In peridotite, an observed increase of seismic wave velocities with depth is controlled by lower degrees of chemical depletion in the deeper upper mantle. In eclogite, seismic velocities increase more rapidly with depth than in peridotite. This follows from contrasting first-order pressure derivatives of bulk isotropic moduli for eclogite and peridotite, and from the lower compressibility of eclogite at high pressures. Our calculations suggest that depletion in cratonic mantle has a distinct seismic signature compared to non-cratonic mantle. Depleted mantle on cratons should have slower Vp, faster Vs and should show lower Poisson's ratios due to an orthopyroxene enrichment. For the modelled Slave craton xenoliths, the predicted effect on seismic wave velocities would be up to 0.05 km/s.  相似文献   

19.
张铭杰  王先彬 《地球化学》1998,27(5):452-457
利用热分解质谱法测定了中国东部新生代碱性玄武岩中流体挥发分的组成,并对不同温度段释放出的CO2气体测定了C,O同位素值,流体组成和CO2的C,O同位素值表明中国东部上地幔源区的不均一性,与其中所含幔源岩捕体相比,碱性玄武岩浆发育在相对氧化的环境中,并有外来流体组分的加入。  相似文献   

20.
Type I spinel peridotite xenoliths from Simcoe Volcano, southern Washington (USA), are from lithospheric mantle approximately 65 km inboard from the axis of the subduction-related Cascade Range. Oxygen fugacities calculated from contents of Fe3+/ΣFe in Simcoe spinels, determined by Mössbauer spectroscopy, are up to 1.4 log units more oxidizing than the FMQ buffer. These are among the most oxidized mantle xenoliths reported, with fugacities substantially higher than those calculated for mantle beneath most of western North America. These results, together with those from amphibole-bearing spinel peridotites from Ichinomegata, Japan (Wood and Virgo, 1989), provide evidence that the mantle above subduction zones is more oxidized than is oceanic or ancient cratonic mantle. We suggest that oxidation was accomplished by an agent ranging in composition from solute-rich hydrous fluid to water-bearing silicate melt. A qualitative model relating extent of oxidation, duration of the oxidation process, and proportion of the available water (derived from subducting slabs) that oxidizes Fe in subarc mantle peridotite, suggests that such an agent can easily produce the observed extents of oxidation over timescales similar to the typical lifespans of subduction zones. For the Cascade arc with a duration of 50 Ma, the observed oxidation in the Simcoe peridotites can be achieved by reacting about 6–11 % of the available water with the mantle. These results demonstrate that water can make an efficient oxidizing agent, and because of the comparatively low ferric iron contents reported for mantle peridotites from other tectonic settings, oxidation of the mantle by water is mostly restricted to subduction zones where water is recycled from the surface and transferred into the mantle wedge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号