首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
本文根据对甘肃省及邻区近几年来发生的松潘7.2级强震、礼县5.0级中强震和海原5.5级中强震前水氡短临异常的分析研究,以及对多年来收集的50个中、强震例共139泉次水氡临震突变资料的分析研究,提出了有监视能力的水氡观测网点。若氡含量出现短趋势加速上升(或下降)和临震突变的同步异常则可能是发生中、强震的一个前兆信息。据此较好地试报了1982年6月8日武威4.1级地震。  相似文献   

2.
T. Kuo 《Ground water》2014,52(2):217-224
Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low‐porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible.  相似文献   

3.
聊古-1井水氡映震能力研究   总被引:3,自引:0,他引:3       下载免费PDF全文
分析了聊古-1井水氡测值在1981年11月9日宁晋Ms5.8地震(△=150Km )前和1983年11月7日荷泽Ms5.9地震(△=150Km)前的异常变化。在地震前5~15天该井水氡出现明显的高值异常。地震发生在五降的过程中。这可能是该井水氡的一项短临异常指标。  相似文献   

4.
Garhwal Himalaya has been rocked by two major earthquakes in the span of just eight years, viz. Uttarkashi earthquake of 20th Oct, 1991 and Chamoli earthquake of 28th March, 1999. Chamoli earthquake of March 28, 1999 was recorded at 11 different stations of a strong motion array installed in the epicentral region. The maximum peak ground acceleration (353 cm/s2) was recorded at an accelerograph located at Gopeshwar. The data from eleven stations has been used for comparison with the simulated acceleration envelopes due to a model of the rupture responsible for this earthquake. For simulation of acceleration envelope the method of Midorikawa (1993) has been modified for its applicability to Himalayan region. This method has earlier been used by Joshi and Patel (1997) and Joshi (1999) for the studyof Uttarkashi earthquake of 20th Oct, 1991. The same method has been used for study of Chamoli earthquake. Layered earth crust has been introduced in place of homogeneous one in this method. The model of rupture is placed at a depth of 12 km below the Munsiari thrust for modelling Chamoli earthquake. Peak ground acceleration was calculated from simulated acceleration envelope using layered as well as homogeneous earth crust. For the rupture placed in a layered crust model peak ground acceleration of order 312 cm/s2 was simulated at Gopeshwar which is quite close to actually recorded value. The comparison of peak ground acceleration values in terms of root mean square error at eleven stations suggests that the root mean square error is reduced by inclusion of a layered earth crust in place of homogeneous earth crust.  相似文献   

5.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

6.
The variations of spring water radon concentration and meteorological parameters were analysed in relation to the seismic activities in Garhwal Himalaya, India. The radon anomalies were classified on the basis of statistical treatment of the daily observations. The precise measurements of water discharge rate from the spring have been made along with radon measurements for earthquake precursory study. The earthquakes with epicentral distances less than 150 km were considered by an empirical relationship. Pre-, co-, and post-seismic changes in the radon concentration were taken carefully into account in the empirical relationship to establish this behaviour as a potential earthquake precursor. The empirical relationship has been validated by the radon data recorded from the spring waters. The magnitudes of the earthquakes were estimated by using the empirical relationship by introducing computed correlation coefficient of radon and meteorological parameters. The calculated magnitude of some local earthquakes matches exactly with the magnitude recorded by the laboratory seismograph. The possible mechanisms that may cause a radon anomaly are also discussed.  相似文献   

7.
Data from 753 earthquakes are used to determine a relationship between surface-wave magnitude (M s) and bodywave magnitude (m b), and from 541 earthquakes to determine a relationship between surface-wave magnitude (M s) and local magnitude (M L) for China and vicinity: M s=0.9883 m b-0.0420, M s=0.9919 M L-0.1773. The relationship of M s versus m b is obtained for 292 events occurred in the Chinese mainland in the time period from 1964 to 1996, 291 events occurred in Taiwan in the time period from 1964 to 1995 and 170 events occurred in the surrounding area. Standard deviation of the fitting is 0.445. Relationship of M s versus M L is obtained for 36 events occurred in the Chinese mainland, 293 events occurred in Taiwan, China and 212 events occurred in the surrounding area. The total amount is 541 events. Standard deviation of the fitting is 0.4673. The uncertainties of the converted M s in different magnitude intervals can be estimated using complementary cumulative distribution function (CCDF). In the relationship of M s versus m b, taking ±0.25 as a range of uncertainties, in magnitude interval m b 4.0–4.9, the probabilities for the converted M s taken value less than (M s-0.25) and more than (M s+0.25) are 17% and 27% respectively. Similarly, we have probabilities for m b 5.0–5.9 are 34% and 20% and that for m b 6.0–6.9 are 11% and 47%. In the relationship of M s versus M L, if the range of uncertainties is still taken as ±0.25, the corresponding probabilities for magnitude interval M L 4.0–4.9 are 22% and 38%, for M L 5.0–5.9 are 20% and 15% and for magnitude interval M L 6.0–6.9, are 15% and 29%, respectively. The relationships developed in this paper can be used for the conversion of one magnitude scale into another magnitude scales conveniently. The estimation of uncertainties described in this paper is more accurate and more objective than the usual estimation expressed by deviation. The estimations described in this paper indicate various dispersions in different magnitude intervals of original data. The estimations of uncertainties described by probabilities can be well connected with the total estimations of uncertainties in seismic hazard assessment.  相似文献   

8.
Two continuous radon monitors (CRMs) have been deployed at Arrowhead Hot Springs along the San Andreas fault near San Bernardino and at Murrieta Hot Springs along the Elsinore fault. The recorded hourly and daily radon variations during 1983 are within ±5% of the mean values. The radon levels increased, however, by about 10–20% above their normal baseline levels in midyear. Several small-magnitude earthquakes (M=3.0–3.5) occurred within 20 km of the Arrowhead site near the end of the period of the radon increase.Discrete radon and helium monitoring at Arrowhead Springs since 1974 has recorded one definite precursory anomaly: a shapr increase of radon and helium (and also other dissolved gases) in 1979 by as much as 60% above their baseline levels. This anomaly was followed by the nearby Big Bear earthquake swarm (main shock,M=4.8) 45 days later. A similar increase was recorded during the first half of 1983, and it was followed by several small earthquakes (M=3.0–3.5) within 20 km of the Arrowhead site. In both cases radon and helium increased proportionally, indicating mixing between the deep-source water and the surface water at variable proportions.Comparison of radon values in gas and in liquid phases indicates that radon is not in equilibrium between the two phases but is distributed preferentially in the gas phase by a factor of 20 to 25. (Only about 5% or less of groundwater radon is in the dissolved phase.) At both sites the dissolved radon is much lower than that expected from solubility.  相似文献   

9.
中强地震前地震波参数异常的研究   总被引:2,自引:0,他引:2  
本文研究了1988年5月26日库尔勒M_35.5地震和1991年2月25日柯坪M_s6.5地震前后的地震波初动符号、振幅比、尾波持续时间比和尾波衰减系数的变化特征,发现两次地震前上述参数均具有不同程度的异常。地震前(?)波初动一致性越强,持续时间越长,未来地震震级越大;振幅比突跳是即将发生地震的明显信号;首先出现尾波衰减系数异常的台站距未来地震震中较近。根据上述参数的异常特征,成功地预报了1991年6月6日和静M_s5.2地震。  相似文献   

10.
The various useful source-parameter relations between seismic moment and common use magnitude lg(M 0) andM s,M L,m b; between magnitudesMs andM L,M s andm b,M L andm b; and between magnitudeM s and lg(L) (fault length), lg (W) (fault width), lg(S) (fault area), lg(D) (average dislocation);M L and lg(f c) (corner frequency) have been derived from the scaling law which is based on an “average” two-dimensional faulting model of a rectangular fault. A set of source-parameters can be estimated from only one magnitude by using these relations. The average rupture velocity of the faultV r=2.65 km/s, the total time of ruptureT(s)=0.35L (km) and the average dislocation slip rateD=11.4 m/s are also obtained. There are four strong points to measure earthquake size with the seismic moment magnitudeM w.
  1. The seismic moment magnitude shows the strain and rupture size. It is the best scale for the measurement of earthquake size.
  2. It is a quantity of absolute mechanics, and has clear physical meaning. Any size of earthquake can be measured. There is no saturation. It can be used to quantify both shallow and deep earthquakes on the basis of the waves radiated.
  3. It can link up the previous magnitude scales.
  4. It is a uniform scale of measurement of earthquake size. It is suitable for statistics covering a broad range of magnitudes. So the seismic moment magnitude is a promising magnitude and worth popularization.
  相似文献   

11.
The earthquakes in Kaliningrad, West Russia on the 21st of September 2004 were unexpected in a seismically quiet area. The main shock of magnitude mb = 5 was widely felt around the Baltic Sea. A comparison with some historic earthquakes in Northern Europe shows that its perceptibility area is smaller than that of the 1904 Oslo Graben earthquake of an estimated magnitude (ML) 5.4 but larger than those of the 1759 Kattegat and 1819 Lurøy earthquakes. The latter are claimed to have had magnitudes (MS) in the range of 5.7-6.0. An analysis of the Lg phase of the Kaliningrad earthquakes as recorded at a number of European stations accords only weakly with the macroseismic intensity pattern that shows fast attenuation towards west-northwest and southeast. The strike-slip focal mechanism of the main shock is discussed in the context of remnant glacial rebound stresses in generating present-day seismicity in N. Europe.  相似文献   

12.
The problem of discriminating between earthquakes and underground nuclear explosions is formulated as a problem in pattern recognition. As such it may be separated into two stages, feature extraction and classification. The short-period (SP) features consist of mb and autoregressive parameters characterising the preceding noise, signal and coda. The long-period (LP) features consist of LP power spectral estimates taken within various group velocity windows. Contrary to common usage we have extracted features from horizontal Rayleigh waves and Love waves as well as vertical Rayleigh waves. The classification is performed by approximating the statistical distribution of earthquake and explosion feature vectors by multivariate normal distributions.The method has been tested on a data base containing 52 explosions and 73 earthquakes from Eurasia recorded at NORSAR between 1971 and 1975. Several of these events are difficult on the mb : Ms diagram [mb(PDE) and Ms (NORSAR) have been used]. The data set was divided into a learning and an independent data set. All of the events both from the learning data set and the independent data set were correctly classified using the new procedures. Furthermore, the increase in separation as compared to the mb : Ms discriminant is significant.  相似文献   

13.
Radon (222Rn) concentration in geothermal waters and CO2-rich cold springwaters collected weekly in duplicate samples from four stations in northern Taiwan were measured from July 1980 to December 1983. Seven spike-like radon anomalies (increases of 2 to 3 times the standard deviation above the mean) were observed at three stations. Following every anomaly except one, an earthquake ofM L above 4.6 occurred within 4 to 51 days, at an epicentral distance 14 to 45 km, and at a focal depth of less than 10 km. The distribution of the earthquakes preceded by radon anomalies is skewed in certain directions from the radon stations; the radon stations seem to be insensitive to earthquakes occurring in the other directions. At the fourth station, near a volcanic area, much gas (mainly CO2) is discharged from the well, together with hot water. A very high concentration of radon was detected in the discharged gas; therefore trapping of gas in the water can result in anomalously high radon contents. According to limited measurements, the radon concentration in water appears to be undersaturated with respect to that in gas. This suggests that hot water is very susceptible to radon loss, and monitoring of radon in gas is more desirable.  相似文献   

14.
对泉州四至井2006年1月至2008年12月水氡观测数据进行分析与处理,依据2倍中误差、短期阶升突跳、短期和中长期趋势异常等多种判别法,对其水氡异常进行判别。结果表明:泉州四至井水氡氡值基本保持春夏高、秋冬低的弓形年变化动态图像,出现的水氡异常对中国台湾东南部及附近海域有较好的对应关系,并对2006年7月28日花莲6.0级、2006年12月26日恒春7.2级、2007年9月7日台东6.3级地震进行案例分析,有关研究结果对寻求泉州四至井水氡异常对中国台湾地区某些敏感对应点的映震能力具有一定的现实意义。  相似文献   

15.
Calibration of magnitude scales for earthquakes of the Mediterranean   总被引:1,自引:1,他引:0  
In order to provide the tools for uniform size determination for Mediterranean earthquakes over the last 50-year period of instrumental seismology, we have regressed the magnitude determinations for 220 earthquakes of the European-Mediterranean region over the 1977–1991 period, reported by three international centres, 11 national and regional networks and 101 individual stations and observatories, using seismic moments from the Harvard CMTs. We calibrate M(M0) regression curves for the magnitude scales commonly used for Mediterranean earthquakes (ML, MWA, mb, MS, MLH, MLV, MD, M); we also calibrate static corrections or specific regressions for individual observatories and we verify the reliability of the reports of different organizations and observatories. Our analysis shows that the teleseismic magnitudes (mb, MS) computed by international centers (ISC, NEIC) provide good measures of earthquake size, with low standard deviations (0.17–0.23), allowing one to regress stable regional calibrations with respect to the seismic moment and to correct systematic biases such as the hypocentral depth for MS and the radiation pattern for mb; while mb is commonly reputed to be an inadequate measure of earthquake size, we find that the ISC mb is still today the most precise measure to use to regress MW and M0 for earthquakes of the European-Mediterranean region; few individual observatories report teleseismic magnitudes requiring specific dynamic calibrations (BJI, MOS). Regional surface-wave magnitudes (MLV, MLH) reported in Eastern Europe generally provide reliable measures of earthquake size, with standard deviations often in the 0.25–0.35 range; the introduction of a small (±0.1–0.2) static station correction is sometimes required. While the Richter magnitude ML is the measure of earthquake size most commonly reported in the press whenever an earthquake strikes, we find that ML has not been computed in the European-Mediterranean in the last 15 years; the reported local magnitudes MWA and ML do not conform to the Richter formula and are of poor quality and little use, with few exceptions requiring ad hoc calibrations similar to the MS regression (EMSC, ATH). The duration magnitude MD used by most seismic networks confirms that its use requires accurate station calibrations and should be restricted only to events with low seismic moments.  相似文献   

16.
The diurnal-variation anomalies of the vertical-component in geomagnetic field are mainly the changes of phase and amplitude before strong earthquakes. On the basis of data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of appearance time of the minima of diurnal variations (i.e, low-point time) of the geomagnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before over 30 strong earthquakes with M S≥6.6 such as Kunlunshan M S=8.1 earthquake on November 14, 2001; Bachu-Jashi M S=6.8 earthquake on February 24, 2003; Xiaojin M S=6.6 earthquake on September 22, 1989, etc. There are good relations between such rare phenomena of geomagnetic anomalies and the occurrence of earthquakes. It has been found that most earthquakes occur in the vicinity of the boundary line of sudden change of the low-point displacement and generally within four days before and after the 27th or 41st day counting from the day of appearance of the anomaly. In addition, the anomalies of diurnal-variation amplitude near the epicentral area have been also studied before Kunlunshan M S=8.1 earthquake and Bachu-Jiashi M S=6.8 earthquake. Foundation item: National Science Technology Tackle Key Project during the Tenth Five-year Plan (2001BA601B01-05-04)  相似文献   

17.
甘东南地区水氡浓度的临界慢化现象研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文将临界慢化理论应用于甘东南地区水氡浓度观测资料的处理中,以2008年5月12日汶川MS8.0地震、2013年7月22日甘肃岷县—漳县MS6.6地震为例,计算表征临界慢化现象的自相关系数和方差。计算结果表明,甘东南地区多个台站的水氡浓度观测资料在两次地震前均存在较明显的临界慢化现象。并从空间分布、持续时间、变化形态方面分析了异常点水氡浓度变化的临界慢化特征,结合水氡异常的水动力学机制和异常点所在构造,认为2次地震前的临界慢化现象与地震的发生有一定关系。  相似文献   

18.
A radon concentration measurement survey was carried out in Ecuador using the SSNTD technique. The data analysis shows a definite radon anomaly prior to March 6, 1987;M=6.9 earthquake. Anomalies found before October 18 and October 28th mild earthquakes in 1986 could be correlated with these events. Other anomalies that we cannot correlate with any geophysical event were also found.  相似文献   

19.
Warm and hot spring water as well as soil gas radon release patterns have been monitored in the Aegean Extensional Province of Western Turkey, alongside regional seismic events, providing a multi-disciplinary approach. In the study period of 20 months, seven moderate earthquakes with M L between 4.0 and 4.7 occurred in this seismically very active region; two earthquakes with magnitude 5.0 also occurred near the study area. Seismic monitoring showed no foreshock activity. By contrast, hydro-geochemical anomalies were found prior to these seismic events, each lasting for weeks. The anomalies occurred foremost in conjunction with dip-slip events and seem to support the dilatancy and water diffusion hypothesis. Increased soil gas radon release was recorded before earthquakes associated with strike-slip faults, but no soil radon anomalies were seen before earthquakes associated with dip-slip faults. Geochemical anomalies were also noticeably absent at some springs throughout the postulated deformation zones of impending earthquakes. The reason for this discrepancy might be due to stress/strain anisotropies.  相似文献   

20.
To better understand the mechanics of subduction and the process of breaking a mature seismic gap, we study seismic activity along the western New Britain subduction segment (147°E–151°E, 4°S–8°S) through earthquakes withm b 5.0 in the outer-rise, the upper area of subducting slab and at intermediate depths to 250 km, from January 1964 to December 1990. The segment last broke fully in large earthquakes of December, 28, 1945 (M s =7.9) and May 6, 1947 (M s =7.7.), and its higher seismic potential has been recognized byMcCann et al., (1979). Recently the segment broke partially in two smaller events of February, 8, 1987 (M s =7.4) and October 16, 1987 (M s =7.4), leaving still unbroken areas.We observe from focal mechanisms that the outer-rise along the whole segment was under pronounced compression from the late 60's to at least October 1987 (with exception of the tensional earthquake of December 11, 1985), signifying the mature stage of the earthquake cycle. Simultaneously the slab at intermediate depths below 40 km was under tension before the earthquake of October 16, 1987. That event, with a smooth rupture lasting 32 sec, rupture velocity of 2.0 km/sec, extent of approximately 70 km and moment of 1.2×1027 dyne-cm, did not change significantly the compressive state of stress in the outer-rise of that segment. The earthquake did not fill the gap completely and this segment is still capable of rupturing either in an earthquake which would fill the gap between the 1987 and 1971 events, or in a larger magnitude event (M s =7.7–7.9), comparable to earthquakes observed in that segment in 1906, 1945 and 1947.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号