首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
The 15N composition of seagrass and benthic macroalgae from shallow waters of Sarasota Bay was measured to determine if stable N isotopes can be used to trace stormwater N into macrophyte production within an urbanized estuary. Results show isotopically enriched macroalgae at the landward stations near creeks and bayous in the central Bay and in the southern portion of the Bay. A known sewage outfall at Whitaker Bayou resulted in δ 15NO3 values from 0 to +9‰. Isotopically enriched NH4 values in Phillippi Creek (+10 to +17‰) were similar to the stormwater 15NH4 values from the watershed (+7 to +18‰). Enriched N sources supported a significant portion of macroalgae N demands in the southern reaches of the Bay while isotopically depleted N sources (i.e., atmospheric deposition and/or fertilizers) appear to be more important for macroalgae in the northern portion of the Bay. Macroalgae were typically more enriched than seagrass and appear to be better indicators of anthropogenic loadings near creeks and bayous that receive large volumes of stormwater and other anthropogenic N sources. Historically, studies have used enriched 15N in macrophytes to infer wastewater influences. This study shows that stormwater N inputs need to be considered in nitrogen budgets for aquatic systems that show anthropogenic 15N enrichment.  相似文献   

2.
Seagrass ecosystems are attracting attention as potentially important tools for carbon (C) sequestration, comparable to those terrestrial and aquatic ecosystems already incorporated into climate change mitigation frameworks. Despite the relatively low C stocks in living biomass, the soil organic carbon pools beneath seagrass meadows can be substantial. We tested the relationship between soil C storage and seagrass community biomass, productivity, and species composition by revisiting meadows experimentally altered by 30 years of consistent nutrient fertilization provided by roosting birds. While the benthos beneath experimental perches has maintained dense, Halodule wrightii-dominated communities compared to the sparse Thalassia testudinum-dominated communities at control sites, there were no significant differences in soil organic carbon stocks in the top 15 cm. Although there were differences in δ13C of the dominant seagrass species at control and treatment sites, there was no difference in soil δ13C between treatments. Averages for soil organic carbon content (2.57?±?0.08 %) and δ13C (?12.0?±?0.3?‰) were comparable to global averages for seagrass ecosystems; however, our findings question the relevance of local-scale seagrass species composition or density to soil organic carbon pools in some environmental contexts.  相似文献   

3.
Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C ? 3.5 to ? 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C ?5.2 to ?6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.  相似文献   

4.
Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of ?13.5‰ to ?5.2‰ for δ13C and ?4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability.  相似文献   

5.
Various experiments involving the measurement of new, regenerated and total productivity using 15N and 13C tracers were carried out in the Bay of Bengal (BOB) and in the Arabian Sea. Results from 15N tracer experiments indicate that nitrate uptake can be underestimated by experiments with incubation time <4 hours. Indirect evidence suggests pico- and nano-phytoplankton, on their dominance over microphytoplankton, can also influence the f-ratios. Difference in energy requirement for assimilation of different nitrogen compounds decides the preferred nitrogen source during the early hours of incubation. Variation in light intensity during incubation also plays a significant role in the assimilation of nitrogen. Results from time course experiments with both 15N and 13C tracers suggest that photoinhibition appears significant in BOB and the Arabian Sea during noon. A significant correlation has been found in the productivity values obtained using 15N and 13C tracers.  相似文献   

6.
A new compilation of N‐isotope and abundance data for metasedimentary rocks, and hyrdothermal micas that proxy for bulk crust, show systematic patterns. (1) δ15N values of kerogen in Precambrian cherts are more negative relative to siliciclastic counterparts, probably due to a mantle hydrothermal component. (2) There is a secular trend from average δ15N 15.3 ± 1.8‰ in Archean shales, through intermediate values in the Proterozoic, to Phanerozoic counterparts where δ15N averages +3.5‰. (3) Hydrothermal micas in metamorphic hydrothermal systems of Palaeozoic and Mesozoic age that proxy for crust have δ15N within the range of contemporaneous sedimentary rocks. (4) Hydrothermal micas track the secular trend of δ15N for kerogen from 2.7 Ga to the Phanerozoic. (5) Within Precambrian datasets δ15N does not increase with decreasing N content; accordingly, high δ15N values cannot stem either from metamorphism or form Rayleigh fractionation. (6) Previous studies show isotopic shifts during metamorphism are only +1 to +3‰ up to amphibolite facies. Values of 10–24‰ are attributed to a high δ15N Archean atmosphere, a residual signature of CI carbonaceous chondrites where δ15N is +30‰ to + 42‰.  相似文献   

7.
We investigated use of δ13C in bulk organic sediment to define the botanical origin of samples preserved in coastal sediment as a means to reconstruct relative sea level in New Jersey, USA. Modern transects at three sites demonstrated that low and high salt‐marsh floral zones dominated by C4 species (Spartina alterniflora and Spartina patens) were associated with sediment δ13C values between ?18.9‰ and ?15.8‰ and occurred from mean tide level (MTL) to mean higher high water (MHHW). Brackish transitional settings vegetated by Phragmites australis with Iva fructescens and Typha sp. (C3 species) and freshwater upland samples (C3 species) were characterized by bulk sediment δ13C values of ?27.0‰ to ?22.0‰ and existed above MHHW. Parallel transects at one site suggested that intra‐site variability was not discernible. The utility of δ13C values for reconstructing relative sea level in New Jersey is limited by an inability to differentiate between brackish sediments related to sea level and freshwater upland samples. To facilitate this distinction in a 4.4 m core, we used a multi‐proxy approach (δ13C values with presence or absence of agglutinated foraminifera) to recognize indicative meanings for four sample types. Sediment with δ13C values greater than ?18.9‰ was derived from a vegetated salt‐marsh and formed between MTL and MHHW. Sediment with δ13C values less than ?22.0‰ and containing agglutinated foraminifera formed in a brackish transitional zone between MHHW and highest astronomical tide (HAT). This is the narrowest elevational range of the four sample types and most precise sea‐level indicator. Sediment with δ13C values less than ?22.0‰ and lacking foraminifera can only constrain the upper bound of former sea level. Samples with intermediate values (?22.0‰ to ?18.9‰) formed between MTL and HAT. Using these indicative meanings and radiocarbon dates, we suggest that a transition from brackish to salt‐marsh δ13C values recorded in the core took approximately 350 years (from 1800 to 1450 cal. a BP). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
《Applied Geochemistry》2003,18(4):615-627
A study was conducted at the Fresh Kills landfill, Staten Island, New York to investigate the use of B and Li isotopes as tracers of mixing and flow in the groundwater environment. Four end-member waters are present at the Fresh Kills: freshwater, seawater, a geochemically distinct transitional groundwater (that occurs in the zone of mixing between seawater and freshwater) and landfill leachate. The δ11B and δ6Li values of end-member waters are distinct and have isotopic compositions that reflect the solute sources: freshwater δ11B∼+30‰, δ6Li∼−22‰; transition zone groundwaters δ11B∼+20‰, δ6Li∼−27‰; seawater δ11B+40 to +75‰, δ6Li−37 to−44‰; leachate δ11B∼+10‰ (δ6Li not determined). Those wells influenced by seawater exhibited a clear chemical mixing trend, with seawater contributions ranging from 3 to 85%. Well waters with a high percentage of seawater (>30%) had δ11B values that were within 1‰ of the seawater value (+40‰), whereas a trend of increasing δ11B values (+55 to +75‰) was observed for wells with a lower percentage of seawater (<30%). δ6Li values for well waters impacted by mixing with seawater ranged from−37 to−44‰, significantly more negative than pure seawater (−31‰). This deviation from the isotopic composition of seawater, for both δ11B and δ6Li values, represents non-conservative behavior and is likely the result of isotopic fractionation during ion exchange reactions. The wide range of δ11B and δ6Li values and the distinct isotopic compositions of end-member waters makes B and Li isotopes useful for recognizing solute sources, however isotopic fractionation may limit their use as simple tracers of groundwater flow and mixing.  相似文献   

9.
In order to characterize the oxygen isotopic composition of internal phosphate and explore the possibility of using these data to identify phosphate sources, we measured oxygen isotopic compositions of phosphate (δ18Op) in sediment pore water in Hongfeng Lake, a typical deep-water lake in a mountainous area. These data, in combination with δ18Op in surface water samples and water column samples, were successfully used to identify phosphate sources. The δ18Op value of sediment pore water ranged from 15.2‰ to 15.8‰, with an average value of 15.5‰—the δ18Op value of internal phosphate. The δ18Op values decreased gradually through the water column from 19.4‰ in surface water to 16.4‰ in deeper water, implying that internal phosphate had more negative δ18Op values than external phosphate. This finding was substantiated by horizontal variations in δ18OP values, which decreased with increasing distance from inflowing rivers. All collected evidence suggests that external and internal phosphate have distinctly different isotopic signatures and that these signatures have not been considerably altered by biological mediation in Hongfeng Lake. Therefore, δ18OP can be used to distinguish phosphate sources. A two-endmember mixing model showed that internal phosphate had an average contribution of 40%, highlighting the influence of internal phosphorus loading on aqueous phosphate and eutrophication. This study illustrates the need to reduce the internal phosphorus load from sediment and provides guidance for nutrient management and in-lake restoration treatment in Hongfeng Lake. The data presented here are limited, but serve to highlight the great potential of δ18Op as an effective tracer for identifying phosphate sources. Systematic investigations of the oxygen isotopic compositions of external phosphate, internal phosphate, and phosphate through the water column, in combination with in-lake P biogeochemical cycle study, would be desirable in further research.  相似文献   

10.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   

11.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are affected by both natural environment and people. Therefore, the study of karst groundwater hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. This paper focused on the major ion chemistry and sulfate isotope of karst groundwater in Chongqing for tracing the sulfate sources and related hydrochemical processes. Hydrochemical types of karst groundwater in Chongqing were mainly of the Ca-HCO3 type or Ca(Mg)-HCO3 type. However, some hydrochemical types were the K + Na + Ca-SO4 type (G25 site) or Ca-HCO3 + SO4 type (G26 and G14 sites), indicating that the hydrochemistry of these sites may be strongly influenced by anthropogenic activities or unique geological characteristics. The δ34S-SO4 2? of collected karst groundwater sample fell into a range of ?6.8 to 21.5 ‰, with a mean value of 5.6 ‰. In dolomite aquifer, the δ34S-SO4 2? value ranges from ?4.3 to 11.0 ‰, and in limestone aquifer, it ranged from ?6.8 to 21.5 ‰. The groundwater samples from different land use types showed distinctive δ34S-SO4 2? value. The δ34S-SO4 2? value of groundwater samples had range of ?6.8 to 16.7 ‰ (mean 4.0 ‰, n = 11) in cultivated land areas, 1.5–21.5 ‰ (mean 7.2 ‰, n = 20) in forested land areas, and ?4.3 to 0.8 ‰ (mean ?1.7 ‰, n = 2) in coalmine areas. The δ34S-SO4 2? values of groundwater samples collected from factory area and town area were 2.2 and 9.9 ‰, respectively. According to the δ34S information of potential sulfate sources, this paper discussed the possible sulfate sources of collected karst groundwater samples in Chongqing. The variations of both δ34S and 1/SO4 2? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sulfide mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) contributed to sulfate in karst groundwater. The influence of oxidation of sulfide mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread. For protecting, sustaining, and utilizing the groundwater resources, the sewage possibly originating from urban, mine or industrial area must be controlled and treated, and the use of fertilizer should be limited.  相似文献   

12.
The paper presents the results of determinations of stable S and O isotopes of dissolved sulfates and O and H stable isotopes of waters from three ponds, that is, Marczakowe Do?y acid pond, Marczakowe Do?y fish pond and Podwi?niówka acid pit pond, located in the Holy Cross Mountains (south-central Poland). The δ34SV-CDT and δ18OV-SMOW of SO4 2? in waters of three ponds (n = 14) varied from ?16.2 to ?9.5 ‰ (mean of ?13.6 ‰) and from ?8.1 to ?3.2 ‰ (mean of ?4.8 ‰), respectively. The mean δ34S–SO4 2? values were closer to those of pyrite (mean of ?25.4 ‰) and efflorescent sulfate salts (mean of ?25.6 ‰), recorded previously in the Podwi?niówka quarry, than to sulfates derived from other anthropogenic or soil and bedrock sources. The SO4 2? ions formed by bacterially induced pyrite oxidation combined with bacterial (dissimilatory) dissolved sulfate reduction, and presumably with subordinate mineralization of carbon-bonded sulfur compounds, especially in both Marczakowe Do?y ponds. In addition, the comparison of δ18O–SO4 2? and δ18O–H2O values indicated that 75–100 % of sulfate oxygen was derived from water. Due to the largest size, the Podwi?niówka acid pit pond revealed distinct seasonal variations in both δ18O–H2O (?9.2 to ?1.6) and δD–H2O (?29.7 to ?71.3) values. The strong correlation coefficient (r 2 = 0.99) was noted between δ18O–H2O and δD–H2O values, which points to atmospheric precipitation as the only source of water. The sediments of both acid ponds display different mineral inventory: the Marczakowe Do?y acid pond sediment consists of schwertmannite and goethite, whereas Podwi?niówka acid pit pond sediment is composed of quartz, illite, chlorite and kaolinite with some admixture of jarosite reflecting a more acidic environment. Geochemical modeling of two acid ponds indicated that the saturation indices of schwertmannite and nanosized ε-Fe2O3 (Fe3+ oxide polymorph) were closest to thermodynamic equilibrium state with water, varying from ?1.44 to 3.05 and from ?3.42 to 6.04, respectively. This evidence matches well with the obtained mineralogical results.  相似文献   

13.
The present study focused on detecting variations in trophic relationships among blue crab (Callinectes sapidus) consumers according to water quality along two estuaries in North Carolina. Stable isotope (δ15N and δ13C) analyses of particulate organic matter and bivalve(Rangia cuneata andCorbicula fluminea) food sources were examined in combination with an Isosource mixing model. Results suggest that blue crab δ13C values increased significantly with increasing salinity from upper to lower sites along the Neuse River estuary (NRE; R2 = 0.87, p < 0.01) and Alligator River estuary (R2 = 0.92, p < 0.01). There was a positive relationship between blue crab δ15N values and nitrate concentrations for the NRE (R2 = 0.48, p = 0.12). This study found that blue crab δ13C values increased with salinity from upper to lower regions along both estuaries. Results suggest that blue crab production may have used alternative food sources that were isotopically (δ13C) depleted, especially in the upper NRE, and enriched sources in the mid to lower regions of both estuaries. Consumers sampled from the upper NRE may be influenced by higher nitrogen input from urban land use and municipal wastewater.  相似文献   

14.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

15.
He Pozanti‐Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro‐diamonds were recovered from the podiform chromitites, and these were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed‐habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds ranges between ?18.8 ‰ and ?28.4 ‰, with a principle δ13C mode at ?25 ‰. Nitrogen contents of the diamonds range from 7 to 541 μg/g with a mean value of 171 μg/g, and the δ15N values range from ?19.1 ‰ to 16.6 ‰, with a δ15N mode of ?9 ‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo‐alloy and nano‐size, quenched fluid phases were observed as inclusions in the PKO diamonds, confirming a natural origin of these diamonds. We believe that the δ13C‐depleted carbon signature of the PKO diamonds is a remnant of previously subducted crustal matter. These diamonds may have crystallized in metal‐rich melts in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts/fliuds. We concluded that diamond‐bearing asthenospheric melts were likely involved in the formation of the Pozanti‐Karsanti podiform chromitite.  相似文献   

16.
Organic geochemical proxies have been studied in a 45-cm-long core retrieved from Lake Naukuchiyatal in Kumaun Himalayas, India. Increase in TOC, N, hydrocarbons and pigments concentration from bottom to surface sediments of the core indicates increase in the lake productivity. Stable isotopes (δ13C and δ 15 N), biomarkers (TAR, CPI and n-ΣC15,17,19) and C/N atomic (between 9 and 12) suggest dominance of algal derived organic matter in these sediments. Decrease in organic δ13C values (between ?27 and ?31‰) in surface sediments indicate influence of sewage and land runoff in shifting organic δ13C values, whereas low (between ?0.23 and 2.2‰) δ15N values together with high pigment concentrations (zeaxanthin and echinenone) represent dominance of cyanobacteria in the lake.  相似文献   

17.
High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers. To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions of suspended particulate organic matter (SPOM) and bacteria in a highly contaminated urban river (the Nanming) and effluents in winter and summer of 2013. Relative to SPOM, bacterial biomass in the river was depleted in 13C and 15N and its C/N ratio was lower (δ13C: ? 33.2‰ ± 3.1‰; δ15N: ? 1.5‰ ± 1.2‰; C/N: 4.8 ± 0.6), while effluents showed higher 13C and 15N contents and C/N ratios (δ13C: ? 25‰ ± 2.1‰; δ15N: + 8.5‰ ± 1.1‰; C/N: 8.1 ± 1.2). Source recognition of SPOM was based on carbon isotopes because they are conservative and distinct between end-members (effluent detritus and bacterial biomass). Using a mixing model, bacterial biomass in the river was calculated to account for < 20% and < 56% of bulk suspended particulate organic nitrogen in winter and summer, respectively. An N budget showed that bacterial N was a small proportion of total nitrogen (< 7.4%) in the riverwater.  相似文献   

18.
为了识别石家庄市南部污灌区地下水硝酸盐污染来源, 采集5种潜在污染源和19组地下水样用于化学和氮同位素分析.灌溉污水NH4+的δ15N值较低(4.0‰), 施化肥土壤和粪堆下土壤NO3-的δ15N值分别为1.4‰和12.4‰; 仅施厩肥的蔬菜种植区下伏近30 m厚包气带沉积物NO3-的δ15N分布显示, 来自动物粪便的NO3-已运移到11.5 m以下包气带, 均值10.9‰; 污水灌溉农田下伏厚层包气带沉积物样品分析结果指示, 土壤层下伏包气带沉积物δ15N值变幅较小, 均值5.7‰.污灌区内除一深井外, 其他水井地下水硝酸盐浓度变化在52.6~124.5 mg/L之间, 均值79.72 mg/L, δ15N值变化在5.3‰~8.3‰之间, 均值7.0‰.污灌区地下水的δ15N值较污灌区土壤层下伏包气带沉积物的δ15N值高, 表明地下水NO3-除了来自灌溉的污水外, 还有δ15N值更高的其他来源, 这些来源主要是人和动物粪便.利用线性混合模型计算, 污灌区地下水NO3-来自灌溉的污水, 约占76%, 而来自人和动物粪便的NO3-约占24%.为控制污灌区地下水NO3-浓度进一步增长, 不仅要加强污水灌溉管理, 还要加强人和动物粪便的管理.   相似文献   

19.
The flow of organic matter along the main navigation channel of Ria Formosa, Portugal, was assessed using determinations of suspended particulate matter (SPM), particulate organic matter (POM), and chlorophyll a (chla) concentrations in conjunction with stable isotope values of primary producers, particulate matter, and two filter feeders. SPM in the lagoon is dominated by inorganic particles comprising 80% of total weight with organic matter averaging about 20%. The algal component of the POM averaged about 5% with the remainder comprised of detritus. The δ13C values of primary producers ranged from ?9.1‰ in the intertidal seagrassZostera noltii to ?30.7‰ in the red seaweedBostrychia scorpioides revealing underlying differences in the mechanisms of carbon uptake. The δ13C value ofB. scorpioides, which develops entangled on the salt marsh speciesSpartina maritima, suggests that its main source of inorganic carbon is atmospheric CO2. The δ13C values of the high marsh macrophyteSarcocornia perennis significantly increased with distance from the ocean while δ13C values ofZ. noltii decreased, probably because higher decomposition of organic matter at inner stations lowers the δ13CO2 value in the water. The δ15N values of Ulvales, seagrasses, and marsh plants significantly increased from outer stations to inner stations. This increase may be due either to recycling of nitrogen (N) within the marsh (with loss of light N2 or NH4) or to inputs of isotopically heavy N from sewage. The δ15N values of particulate matter showed an opposite trend, which indicates higher microbial degradation of organic matter at the inner lagoon. The data demonstrate that the seston in the lagoon is a mixture of detritus from lagoon primary producers with a minor contribution of microalgae. The filter feeders are most likely assimilating a mixture of phytoplankton and microphytobenthos. Digestion of lagoon seston is selective. The δ15N values of both muscle and digestive gland of filter feeders showed the opposite gradient of particulate matter indicating that the depleted δ15N of SPM at inner stations was not assimilated or even ingested. Stable isotopes values did not differ between the filter-feeders—the musselMytilus galloprovincialis collected on buoys and the clamTapes decussatus collected in the sediment—suggesting a considerable mixture of benthic-pelagic organic matter throughout the water column. Assessment of the changes in isotopic decomposition of detritus as it decays is required to refine our understanding of organic matter transfers in detrital food webs.  相似文献   

20.
Palaeotemperature reconstruction for the period of 20?18 ka BP in Siberia is here based on δ18O analysis and 14C dating of large syngenetic ice wedges. Dozens of yedoma exposures, from Yamal Peninsula to Chukotka, have been studied. Snow meltwater is considered to be the main source of ice‐wedge ice. The modern relationship between δ18O composition of ice‐wedge ice and winter temperature is used as a base for reconstruction. In modern ice wedges (elementary veins that have accumulated during the last 60–100 years) δ18O fluctuates between ?14 and ?20‰ in western Siberia and between ?23 and ?28‰ in northern Yakutia. The trend in δ18O distribution in ice wedges dated at 20?18 ka BP is similar to the modern one. For example, the δ18O values in Late Pleistocene wedges are more negative going from west to east by 8–10‰, i.e. from ?19 to ?25‰ in western Siberian ice wedges to ?30 to ?35‰ in northern Yakutia. However, values are as high as ?28 to ?33‰ in north Chukotka and the central areas of the Magadan Region and even as high as ?23 to ?29‰ in the east of Chukotka. The same difference between the oxygen isotope composition of ice wedges in the eastern and western regions of Siberian permafrost (about 8–10‰) is also preserved from 20?18 ka BP to the present: δ18O values obtained from large ice wedges from the Late Pleistocene vary from ?19 to ?25‰ in western Siberia to ?30 to ?35‰ in northern Yakutia. We conclude that, at 20?18 ka BP, mean January temperatures were about 8–12°C lower (in Chukotka up to 17–18°C) than at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号