首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1997/1998年青藏高原西部地区辐射平衡各分量变化特征   总被引:10,自引:1,他引:9  
利用中日亚洲季风机制研究计划1997年9月~1998年10月在青藏高原西部改则和狮泉河2个站点自动气象站辐射平衡的观测资料,分析了高原西部2个地区辐射平衡各分量在不同季节的季节平均日变化和年变化特征,并且还与1979年5~8月第一次青藏高原气象科学实验的辐射观测资料和1982,1983年青藏高原辐射平衡观测实验的结果进行了比较分析。结果发现:高原西部辐射平衡各分量的变化不仅有季节之间和年际的差异,高原西部的不同地区之间的变化也有较大的差异:(1)总辐射在春夏两季相差很小,改则春季(3~5月平均)日变化的极大值甚至比夏季(6~8月平均)还大;(2)地表反照率的年际变化及两地之间的差异均可能较大;(3)大气逆辐射日变化、年变化特征与其他辐射分量明显不同,其日变化、年变化的位相均晚于其他分量;(4)两地之间地面辐射平衡的年变化似乎有一个位相差,改则的月平均最大值和最小值均较狮泉河晚了约1个月,因此从冬季到夏季的大部分时间里,改则的地面辐射平衡是小于狮泉河的,而在从夏季到冬季的大部分时间里,改则是大于狮泉河的。  相似文献   

2.
利用98’TIPEX实验资料、1998年5-8月青藏高原6个自动热量平衡站(AWS)资料、青藏高原常规观测资料、中国300多个站的逐日降水资料、国家卫星中心接收的1998年5-8月OLR和日本GMS的TBB资料,研究了1998年5-8月青藏高原及其邻近地区逐日地面总热源的季节变化特征及其与西太平洋副热带地区对流的关系。结果表明:高原地面总热源与高原雨季开始有密切关系,高原雨季开始以后,高原平均的地面总热源明显减小;高原平均的地面总热源与20—30°N附近的西太平洋副热带地区的TBB有很好的负相关关系,表明高原地面总热源可以通过某种机制影响副热带地区的对流。  相似文献   

3.
青藏高原隆起对我国、亚洲乃至整个北半球的大气环流和天气气候形成起着重要的作用,受到气象学界的普遍重视。其中特别是高原地面对大气的加热作用,更是研究的中心议题之一。因此,在第一次青藏高原气象科学实验期间(1979年5—8月),高原地面热源观测就成了实验的重要组成部分。组织了一批科研人员深入高原腹地进行定点野外考察,并取得了大量实测资料,为研究高原地面辐射平衡和热平衡状况及其季节变化特  相似文献   

4.
利用1998—2016年NCEP/DOE逐日的日平均地面感热通量和地面潜热通量、MICAPS历史天气图资料、青藏高原低涡切变线年鉴,对高原低涡涡源区与高原地面加热特征进行统计分析,对比研究了移出青藏高原的高原涡(移出涡)、未移出青藏高原的高原涡(未移出涡)的涡源与高原地面加热的季节变化特征,及移出涡、未移出涡涡源区的地面加热特征及高原地面加热与低涡生成的相关性。结果表明,高原涡、未移出涡、移出涡的涡源分布季节变化特征相似,由冬到春到夏,初生区域逐渐扩大,由夏到秋到冬正好相反,不同的是移出涡涡源区明显比高原涡、未移出涡小,初生中心位置的季节变化也不同;高原地面感热、地面潜热、地面热源分布的季节变化特征相似,由冬到春到夏经历了明显增强的过程,由夏到秋到冬经历了减弱的过程,不同的是热源的快速增强、减弱程度及其发生季节差异大,地面潜热由春到夏增强特别明显,这与移出涡生成个数的明显增加相一致;未移出涡、移出涡春、夏、秋季主要涡源区所处的地面热源值域不同,移出涡夏季的值比未移出涡高,移出涡生成对高原区域地面热源依赖要比未移出涡强一些;夏季移出涡、未移出涡的涡源区都处在与高原地面热源正相关区内,它们与地面潜热的显著正相关区比高原地面感热的大,尤其是移出涡,高原地面潜热在高原涡生成中有重要作用,对移出涡生成影响更大。  相似文献   

5.
长序列卫星辐射资料的缺乏一直是制约青藏高原(以下简称高原)辐射长期变化研究的重要原因之一.对国际上最新提供的1984—2017年ISCCP-FH(以下简称FH)长序列卫星辐射资料中的大气顶逸出长波辐射(OLR)、到达地面短波辐射(SWD)、地面向上长波辐射(LWU)、到达地面长波辐射(LWD)进行分析,评估了FH辐射资...  相似文献   

6.
江灏  王可丽 《高原气象》1997,16(3):250-257
针对辐射传输模式在青藏高原地区的应用问题,使用Liou-Ou一维辐射传输模式及1982年8月 ̄1983年7月青藏高原热源观测实验期间青藏高原地面、高空与卫星观测资料,在高原辐射传输模式中区分了下垫面温度与地表空气温度的作用,并利用卫星观测资料对模式改进后的实际效果进行了验证;分析了地表温度的日变化和季节变化硬度,得到了下垫面温度的简单参数化方法。  相似文献   

7.
青藏高原地区地-气系统的辐射平衡特征   总被引:1,自引:0,他引:1  
本文利用1982年8月—1983年7月青藏高原热源野外考察期间的Nimbus7卫星观测资料,分析了高原及其邻近地区行星反照率、大气顶的射出长波辐射和地-气系统辐射平衡的区域分布及季节变化特征以及它们对天气气候的影响。同时配合同期的地面辐射观测资料,讨论了卫星资料与地面实测资料间的相互关系,为探索卫星资料的应用等作了尝试。  相似文献   

8.
本文根据青藏高原气象科学实验资料,利用拟订的经验公式比较细致地讨论了高原及其邻近地区地表热源和热平衡各分量的分布特征,着重分析了高原季节转换对地面加热场(包括它的分量感热、潜热)的影响。揭示出高原地区地面对大气加热的主要方式和强弱变化。指出在旱季高原地面对大气加热以感热为主,其中尤以高原西部最强。进入雨季后,潜热作用加强,整个东半部都转以潜热为主。文中还讨论了拖曳系数C_D的分布,有东部大于西部,河谷大于平地的特点。C_D的平均值在4—5·10~(-3)之间。  相似文献   

9.
地表太阳总辐射具有较大的时空变化特征,不同地区的影响因素也存在显著差异。本文利用1961—2016年青藏高原与华北地区的地表太阳总辐射资料,在进行严格的质量控制和均一化处理的基础上,深入分析了两个地区总辐射的年际变化趋势,同时结合云量和气溶胶光学厚度观测资料,探讨了两个地区总辐射变化的影响因素。结果表明:(1)1961—2016年青藏高原和华北地区总辐射总体呈下降趋势,但2008年后青藏高原西部和东部地区总辐射变化趋势相反,而华北地区站点总辐射均呈上升趋势。(2)青藏高原西部地区总辐射的下降主要受到云量变化的影响,而东部地区低云量和气溶胶的下降是总辐射上升的重要原因。(3)在2006—2016年,华北地区总辐射的变化受气溶胶的影响更加显著。  相似文献   

10.
本文选择2012年8月16~17日降水个例,利用WRFV3.5天气模式模拟研究青藏高原东坡的地形坡度、坡向及覆盖短波辐射效应(Effect of Slope,Aspect and Shading,ESAS)。结果显示,ESAS产生的短波辐射强迫(强迫)空间分布与坡度大小一致,表现为坡度大时强迫大,坡度小时强迫小;朝西坡向为负强迫,坡向朝东为正强迫,正负强迫分别超过20和32W m-2。地形覆盖使得坡度和坡向在青藏高原东坡(高原东坡)上产生的地面短波辐射通量变化(辐射通量变化)整体向东南移入盆地,位移后的辐射通量增减仍然和高原东坡的坡度、坡向分布一致。地表热通量、地表温度在白天的变化和辐射通量变化分布一致,均在四川盆地内有一条高值带,且形状类似高原东坡和盆地的衔接线;EASA对地面各热通量的影响可以延续到夜间,使得夜间地表热通量变化和高值区位置与白天相似,但变化幅度减小。水汽混合比和风场的变化均具有与潜热变化相似的空间形态,在夜间尤其明显。潜热的增加(减小)可能引起风速增减加(减小),并最终导致降水的改变。   相似文献   

11.
华南地面太阳辐射状况及其转折特征分析   总被引:4,自引:0,他引:4  
利用华南地区1961—2003年的太阳总辐射、直接辐射和散射辐射资料分析了该地区地面太阳辐射状况,包括年际变化和季节变化,重点分析了该地区太阳总辐射在1980—1990年代期间的转折过程,并与全国平均状况进行对比。结果表明:1961—2003年,华南地区的总辐射和直接辐射整体呈下降趋势,散射辐射的变化不显著,与全国平均辐射状况的变化趋势一致。1983年之前,华南总辐射处于迅速下降阶段,之后发生转折开始回升,至2001年前后已经恢复到平均水平。华南地区总辐射和散射辐射的季节变化非常明显,夏季最高,春秋两季次之,冬季最低,一年中散射辐射的最高和最低值相比总辐射提前一个月出现。另外,结合云量和能见度资料初步分析了广州市地面太阳辐射的变化和转折过程,表明广州地面太阳总辐射的下降及转折过程主要与该地区的大气清洁程度相关。  相似文献   

12.
青藏高原不同地区辐射特征对比分析   总被引:13,自引:7,他引:6       下载免费PDF全文
武荣盛  马耀明 《高原气象》2010,29(2):251-259
利用"全球协调加强观测计划(CEOP)之亚澳季风青藏高原试验"(CAMP/Tibet)在藏北高原的BJ站、NPAM站及中国科学院珠穆朗玛峰大气与环境综合观测研究站、纳木错多圈层相互作用综合观测研究站和藏东南高山环境综合观测研究站2007年的辐射观测资料,分析了这些地区不同下垫面地表辐射各分量及地表反照率的日变化和月际变化特征。结果表明,向下短波辐射受太阳高度角的影响存在明显的日变化和月际变化;向上短波辐射的月际变化基本与总辐射一致,在个别月份由于高原积雪造成地表反照率较高,从而使晴天向上短波辐射全年较高;向下长波辐射存在基本的季节变化,最大值出现在天空总云量较多的夏季(6~8月),最小值出现在冬季(12月和1月);向上长波辐射基本上都是夏季为全年最大,冬季为全年最小。这与地表温度的年变化情况相一致。高原不同地区各季节晴天地表净辐射存在差异,NPAM站和藏东南站由于下垫面植被覆盖较好,净辐射值各季节均高于其它各站;NPAM站、纳木错站和珠峰站地表反照率日变化曲线呈"U"型,BJ站和藏东南站日变化相对复杂,藏东南站全年月平均地表反照率较小且变化不大,其他各站存在基本的年变化趋势。  相似文献   

13.
1983年夏季青藏高原地区的地面和大气加热场   总被引:3,自引:3,他引:3  
本文利用1982年8月—1983年7月在青藏高原所取得的太阳辐射观测资料,计算和分析了高原主体78个站夏季地面和大气的加热场。结果表明:1983年夏季,高原地区地面加热场为较强的热源,高原主体的最大加热中心在东南部,林芝和甘孜各有一个地面热源中心;地面加热场强度最大值在6月和7月出现。4—9月高原主体为大气热源,最大热源中心位于高原东部和中部,最大热源强度在7月出现。在大气总加热中,高原东部以降水潜热为主,高原中部、西部和南部则以地面有效辐射为主。  相似文献   

14.
青藏高原大气总水汽量的反演研究   总被引:2,自引:11,他引:2  
利用2001年青藏高原89个气象站资料、NCEP格点再分析资料以及2001—2003年7月3个地基GPS站的大气总水汽量观测资料,对GPS遥感的大气总水汽量与探空观测结果做了比较,研究了大气总水汽量变化对降雨形成的影响,大气总水汽量与地面水汽压的关系,分析了青藏高原大气总水汽量的时空变化特征及其成因。结果表明:GPS遥感的大气总水汽量与探空观测结果吻合得较好,2001年那曲站两种结果相比均方根误差仅0.15 cm;大气总水汽量与地面水汽压之间有良好的相关关系;不同季节高原上基本都存在3个明显的大气总水汽量高值中心:即东南部、西南部和西北部;高原大气总水汽量分布的季节变化与500 hPa风场及整层大气水汽通量的变化关系密切。  相似文献   

15.
青藏高原太阳总辐射的计算方法的讨论   总被引:8,自引:0,他引:8  
本文利用1982年8月—1983年7与1978—1980年青藏高原地区总辐射的观测资料与二流近似的模式计算讨论了高原地区总辐射的气候学计算方法,计算了纬度24°—46°不同海拔高度,不同地表反射率条件下的晴天地面总辐射的月平均值,并绘制了青藏高原地区1月与7月晴天地面总辐射的分布图。  相似文献   

16.
青藏高原地区NCEP新再分析地面通量资料的检验   总被引:27,自引:9,他引:18  
魏丽  李栋梁 《高原气象》2003,22(5):478-487
利用1979—1998年地面气象站温度观测资料和1982年8月-1983年7月高原热源观测资料,检验了NCEP/DOE新再分析地面气温和地面辐射收支在青藏高原地区的偏差。比较表明,气温和地面辐射量新再分析值能反映实际年变化特征,但其温度值系统性偏低,偏低幅度随地区和季节而变化。由于其气温和地表温度偏低造成地表长波辐射和大气逆辐射系统性偏低;冬季积雪地区的地表吸收太阳辐射和净辐射新再分析值偏小;地面净长波、净短波和总的净辐射与实测的偏差比较小。分析发现,同化模式地形高度与地面气象站海拔高度的差异是造成气温新再分析与实测偏差的主要原因,冬季积雪区地表反照率新再分析值偏大是造成冬季地面净辐射偏小的因素,并加剧了冬季气温新再分析的偏差。其研究对改进气候模拟结果分析有一定的启发。  相似文献   

17.
青藏高原降雪的气候学分析   总被引:11,自引:0,他引:11  
邹进上  曹彩珠 《大气科学》1989,13(4):400-409
青藏高原上的自然天气季节和大气环流与我国东部平原极不相同,因此,高原上的降雪,无论是时空分布,或者是降雪天气系统都有很多特殊性。 本文根据1966—1975年青藏高原气象资料,阐述了高原上自然降雪的时空分布特点和形成的物理条件;归纳出有利于降雪的六种天气型式;分析了大气环流季节变化与高原降雪之间的联系。高原降雪主要集中发生在冬夏环流的转换季节。  相似文献   

18.
利用中国科学院那曲高寒气候环境观测研究站2013年9月1日至2014年8月31日一个完整年的观测资料,对陆面过程模式CLM4.5在青藏高原(下称高原)高寒草甸下垫面地表能量交换的模拟性能进行了评估。模拟结果表明,CLM4.5能够较好的模拟高原春季、夏季和秋季非冻结期地面长波、反射辐射和地表净辐射、感热和潜热通量以及地表土壤热通量等的季节变化和日循环特征。但对冬季冻结期地表温度的模拟偏低,导致模拟与观测的感热反相,对地面反射辐射模拟偏大。截断冬季降水的敏感性试验进一步指出,模式冬季反射辐射偏大主要是由于积雪引起的地表反照率偏高造成,进而造成地表温度以及感热通量的模拟偏低。因此,高原积雪参数化方案以及与积雪相关的反照率参数化方案还需进一步改进和完善。  相似文献   

19.
1998年夏季青藏高原辐射平衡分量特征   总被引:49,自引:1,他引:48  
利用1998年夏季第二次青藏高原气象科学试验(TIPEX)获得的改则、当雄和昌都三个热源观测站的数据和相关资料,统计和分析了高原夏季辐射平衡分量和热源强度的变化特征.结果表明高原地面总辐射平均强度以西部最强,中部次之,东部最小.6月中旬后随着雨季到来,地表反射率均有所降低,中部和东部的辐射强度明显减弱,西部雨季降水和云量都比较少,辐射强度变化不明显.高原中部和东部的净辐射在6月中旬有明显的突变现象,西部突变期出现在7月上旬,以中部的辐射加热强度最大,东部次之,西部最小.湿期随着地面长波辐射的减少,热源强度明显增大.  相似文献   

20.
利用东南极高原熊猫-1自动气象站2011年2月—2012年1月观测的辐射资料和相关资料,对辐射分量和辐射平衡的季节变化进行了研究。结果表明,夏季是东南极高原获得太阳能的主要时段,总辐射通量夏季平均为365.0 W/m2,总量达到2752.1 MJ/m2,占全年总辐射量的58%。各个季节均能出现总辐射瞬时值大于大气顶水平总辐射,春季发生频率最高,冬季最小,总辐射平均日变化呈单峰型。大气长波辐射除夏季外,日变化不明显。冰雪面长波辐射除冬季外,各季节平均日变化呈明显的单峰单谷型。净辐射12月和1月为很小的正值,其他月份为负值。年平均净辐射为 -8.7 W/m2,表明地表相对于大气为冷源。该站的辐射平衡特征与其他南极内陆高原站相似,雪面具有强烈的辐射冷却效应,导致净辐射绝对值都小于下降风区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号