首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
结合地质和遥感图像解译资料,以物探方法查找活断层是行之有效的方法。针对单一的物探方法在反演解释中具有多解性的弊端,本文提出以高密度电阻率法为主,浅层地震反射波法为辅的综合物探勘察组合模式。经实际钻探证明,这种综合物探模式对隐伏活断层的勘察是完全可行的,并具有较强的实用推广性。  相似文献   

2.
It is crucial to reveal the surface traces and activity of active faults by obtaining high-precision microtopography and three-dimensional shallow geometry. However, limited by the traditional geological investigation methods in the field and geological condition factors, the measurement method on microtopography and shallow geometry of active fault is badly insufficient. In this study, the TLS and GPR are firstly used comprehensively to delineate the microtopography and shallow geometry of the normal fault scarp on the north margin of Maoyaba Basin in Litang. Firstly, the vertical displacements of two landforms produced by the latest two periods of normal faulting and the two-dimensional GPR profiles are obtained separately. Secondly, the three-dimensional measurement method of active fault based on TLS and GPR is preliminarily established. On this basis, three-dimensional model of fault scarp and three-dimensional images of subsurface geometry are also obtained. These data all reveal a graben structure at normal fault scarps. Thirdly, the fusion and interpretation of three-dimensional data from the surface and subsurface are realized. The study results show:1)the vertical displacements of the T1 and T2 terraces by the normal fault movement is 1.4m and 5.7m, the GPR profile shows a typical fault structure and indicates the existence of small graben structure with a maximum width of about 40m in the shallow layer, which further proves that it is a normal fault. 2)the shallow geometry of the normal fault scarp can be more graphically displayed by the three-dimensional radar images, and it also makes the geometry structure of the fault more comprehensive. The precise location and strike of faults F1 and F2 on the horizontal surface are also determined in the three-dimensional radar images, which further proves the existence of small graben structure, indicating the extensional deformation characteristics in the subsurface of the fault scarps. Furthermore, the distribution of small graben structure on the surface and subsurface is defined more precisely. 3)the integrated display of microgeomorphology and shallow geometry of normal fault scarp is realized based on the three-dimensional point cloud and GPR data. The fusion of the point cloud and GPR data has obvious advantages, for the spatial structure, morphological and spectral features from the point cloud can improve the recognition and interpretation accuracy of GPR images. The interpreted results of the GPR profiles could minimize the transformation of the surface topography by the external environment at the most extent, restore the original geomorphology, relocate the position and trend of faults on the surface and constrain the width of deformation zones under the surface, the geological structure, and the fault dislocation, etc. In a word, the TLS and GPR can quickly and efficiently provide the spatial data with multi-level and multi-visual for non-destructive inspection of the microgeomorphology and shallow structure for the active fault in a wide range, and for the detection of active fault in the complex geological environments, and it is helpful to improve the accuracy and understanding of the investigation and research on microtopography and shallow geometry of active faults. What's more, it also offers important data and method for more comprehensive identification and understanding of the distribution, deformation features, the behaviors of active faults and multi-period paleoseismicity. Therefore, to continuously explore and improve this method will significantly enhance and expand the practicability and application prospects of the method in the quantitative and elaborate studies of active faults.  相似文献   

3.
Earthquake rupture process generally involves several faults activities instead of a single fault. A new method using both fuzzy clustering and principal component analysis makes it possible to reconstruct three dimensional structure of involved faults in earthquake if the aftershocks around the active fault planes distribute uniformly. When seismic events are given, the optimal faults structures can be determined by our new method. Each of sub-fault planes is fully characterized by its central location, length, width, strike and dip. The resolution determines the number of fault segments needed to describe the earthquake catalog. The higher the resolution, the finer the structure of the reconstructed fault segments. The new method successfully reconstructs the fault segments using synthetic earthquake catalogs. By taking the 28 June 1992 Landers earthquake occured in southern California as an example, the reconstructed fault segments are consistent with the faults already known on geological maps or blind faults that appeared quite frequently in longer-term catalogs.  相似文献   

4.
Fault and fracture interpretation is a fundamental but essential tool for subsurface structure mapping and modelling from 3D seismic data. The existing methods for semi-automatic/automatic fault picking are primarily based on seismic discontinuity analysis that evaluates the lateral changes in seismic waveform and/or amplitude, which is limited by its low resolution on subtle faults and fractures without apparent vertical displacements in seismic images. This study presents an innovative workflow for computer-aided fault/fracture interpretation based on seismic geometry analysis. First, the seismic curvature and flexure attributes are estimated for highlighting both the major faults and the subtle fractures in a seismic volume. Then, fault probability is estimated from the curvature and flexure volumes for differentiation between the potential faults and non-faulting features in the geometric attributes. Finally, the seeded fault picking is implemented for interpreting the target faults and fractures guided by the knowledge of interpreters to avoid misinterpretation and artefacts in the presence of faulting complexities as well as coherent seismic noises. Applications to two 3D seismic volumes from the Netherlands North Sea and the offshore New Zealand demonstrate the added values of the proposed method in imaging and picking the subtle faults and fractures that are often overlooked in the conventional seismic discontinuity analysis and the following fault-interpretation procedures.  相似文献   

5.
Analyses of structural and geomorphological data combined with remote sensing interpretation confirm previous knowledge on the existence of an extensional Quaternary tectonic regime in the Colfiorito area (Umbro-Marchean Central Apennines). This is characterized by a maximum principal axis of finite strain oriented approx. NE–SW, which is the result of a progressive deformation process due to pure and radial extension. Surface geological data, the crustal tectonic setting (reconstructed using a CROP 03 seismic reflection profile), and seismological data relative to the autumn 1997 Colfiorito earthquake sequence constrain the following seismotectonic model. We interpret the seismogenic SW-dipping low-angle normal fault pictured by seismic data as an inverted thrust ramp located in the basement at depth between 5 and 10 km. The surface projection of this seismogenic structure defines a crustal box within which high-angle normal faults are responsible for the deformation of the uppermost crust. The regional patterns of pre-existing basement thrusts therefore control the seismotectonic zoning of the area that cannot be directly related to the high-angle normal fault systems which cut through different crustal boxes; the latter system records, in fact, re-shear along pre-existing normal faults. Moreover, Quaternary slip-rates relative to high-angle normal faults in the Central Apennines are closely related to seismic hazard within each crustal box.  相似文献   

6.
各种地质调查方法的综合研究证明,兰州市所谓的“刘家堡断裂”实际上应该是兰州七里河向斜盆地的北部边界.采用适合于百米以内地震勘探的观测系统,主要探测“刘家堡断裂”沿线浅部岩层变化情况,通过分析4个场地的浅层地震剖面,阐述了勘探场地附近地震图像的特征及其所反映的七里河向斜盆地西北边缘的构造趋势.地震勘探认为,向斜构造界线两侧岩层物理性质差异明显,地震反射剖面对比反映出“刘家堡断裂”与“深沟桥断裂”交汇的部位褶皱变形非常剧烈.总之,兰州盆地内部地质构造复杂,地震勘探的正确解释是建立在对地质构造正确认识的基础上的.  相似文献   

7.
城市活动断层探测和断层活动性评价问题   总被引:8,自引:10,他引:8  
根据近年来城市活动断层探测与地震危险性评价的实际工作,归纳了探测工作中在地质地貌、地球化学和地球物理探测中存在的问题,针对性提出了相应的建议,以进一步推进这一工作  相似文献   

8.
to the practice of urban active fault exploration and associated fault activity assessment conducted in recent years, this paper summarizes the problems encountered in geological, geomorphological, geochemical and geophysical surveys, and proposes the following means and suggestions to solve these problems. To determine the most recent faults or fault zones, emphasis should be placed on identifying the youngest active faults and offset geomorphology. To understand the history of faulting and to discover the latest offset event, it is suggested that geophysical prospecting, drilling and trenching be conducted on one pro/de. Because of significant uncertainties in late Quaternary dating, we advise systematic sampling and the use of multiple dating methods. Shallow seismic reflection has been proven to be the most useful method in urban active fault exploration. However, there is a pressing need to increase the quality of data acquisition and processing to obtain high resolution images so as to enhance our ability to identify active faults. The combination of seismic P-wave reflection and S-wave reflection methods is proved to be a powerful means to investigate the tectonic environments of the deep crust.  相似文献   

9.
A methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images. This method is applied on several synthetic models and on field data set acquired on three experimental sites during the European project PALEOSIS where trenches were dug. The results presented in this work are valid for electrical tomographies data collected with a Wenner-alpha array and computed with an l1 norm (blocky inversion) as optimization method. For the synthetic cases, three geometric contexts are modelled: a vertical and a dipping fault juxtaposing two different geological formations and a step-like structure. A superficial layer can cover each geological structure. In these three situations, the method locates the synthetic faults and layer boundaries, and determines fault displacement but with several limitations. The estimated fault positions correlate exactly with the synthetic ones if a conductive (or no superficial) layer overlies the studied structure. When a resistive layer with a thickness of 6 m covers the model, faults are positioned with a maximum error of 1 m. Moreover, when a resistive and/or a thick top layer is present, the resolution significantly decreases for the fault displacement estimation (error up to 150%). The tests with the synthetic models for surveys using the Wenner-alpha array indicate that the proposed methodology is best suited to vertical and horizontal contacts. Application of the methodology to real data sets shows that a lateral resistivity contrast of 1:5–1:10 leads to exact faults location. A fault contact with a resistivity contrast of 1:0.75 and overlaid by a resistive layer with a thickness of 1 m gives an error location ranging from 1 to 3 m. Moreover, no result is obtained for a contact with very low contrasts (∼1:0.85) overlaid by a resistive soil. The method shows poor results when vertical gradients are greater than horizontal ones. This kind of image processing technique should be systematically used for improving the objectiveness of tomography interpretation when looking for limits between geological objects.  相似文献   

10.
兰州市地震活断层探测新进展   总被引:6,自引:0,他引:6  
文中综述了兰州市地震活断层探测的最新进展情况。通过航、卫片解译,地质地貌调查,地球化学探测,浅层人工地震探测,电法探测,钻孔探测,特别是大型探槽等综合研究,对兰州市7条目标断层的新活动性提出了新的认识。修改了4条断层的最新活动时代,即金城关断层、雷坛河断层、寺儿沟断层和西津村断层等前人提出为QP3活动断层,探测结果为Q1p-Q2P断层;特别是否定了穿过市区的晚第四纪活动的刘家堡断层(Qh)和深沟桥断层(Q3P),明确了马衔山北缘断层西段为晚更新世—全新世活断层,并为1125年兰州7级地震的发震断层  相似文献   

11.
Electrical tomography, which gives good results even in fairly complex geological environments, has given a new lease of life to electrical methods in hydrogeological surveys. Nevertheless, a rapid decline in resolution with increasing depth remains the main problem of the electrical methods. In the Pannonian basin in Croatia, at a test area, combining both electrical tomography and seismic reflection methods provides data that better constrain the lithological and hydrogeological model of the subsurface.Electrical tomography revealed a rather thick packet of sediments with increased resistivity at depths of 40–100 m. Using the electrical forward modelling, the existence of two different hydrogeological models was shown. The first model presupposes a reasonably homogeneous packet of sandy clays or clayey sands, and the other model presupposes the alternation between layers of clays and sands. From the hydrogeological point of view, the second model is perspective, but unfortunately, the use of electrical tomography alone does not allow the ambiguity to be resolved. The separation of these two models became possible using seismic reflection. Three seismic environments were isolated from the seismic profile treated, and the strongest reflections were discovered in the first seismic environment, which covers the depths from 40 to 100 m. It was determined that the second model is more acceptable, because these reflections are caused by lithological changes, that is, the alternations of sands and clays. The interpretation is consistent with exploratory borehole data. The conclusion is that electrical tomography gives data concerning the sediment lithology up to depths of 40 m, but at greater depths combined interpretation of electrical and seismic data constrains the subsurface model better.  相似文献   

12.
为查明夏垫断裂东北段的空间位置、性质及其活动性,由大厂八百户起向东北方向,经过三河齐心庄至北京马坊镇,以可控震源激发方式,完成高分辨率浅层地震勘探测线7条,长约22 km。各地震反射时间剖面波组特征变化明显,断裂特征清晰,获取了准确的断点定位及断裂发育特征,展现了自八百户经齐心庄至马坊镇延伸约20 km范围内夏垫断裂的空间展布及浅部构造特征。结果表明:研究区内夏垫断裂为倾向SE、视倾角约为69°的正断层,结合以往研究成果分析,夏垫断裂属于全新世活动断裂;同时揭示夏垫断裂东北段明显的分段性,齐心庄以北出现一倾向NW的分支断裂。  相似文献   

13.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

14.
为查明商丘市南部发育的2条断层——路河断层与商丘南断层的深部构造背景,在商丘市南部路河附近布设一条大地电磁测深测线,采用远参考数据观测与处理技术,获得地下电性结构,并对探测剖面深度5.5 km以上的电性剖面与地质剖面进行分析。结果表明,商丘南部的2条断层为倾向相对的正断层,南支规模较小,北支略大,均错断太古界,有向深部汇聚到主断裂的趋势,在太康隆起北部形成小型地堑。本研究结果可为商丘南部地震构造背景的相关研究提供参考。  相似文献   

15.
银川盆地西大滩隐伏断层晚第四纪活动特征   总被引:2,自引:1,他引:1       下载免费PDF全文
西大滩隐伏断层位于银川盆地北部,是石嘴山市活断层探测项目的目标断层之一。在浅层地震勘探的基础上,通过钻孔联合剖面探测和钻孔样品年龄测试,获得断层上断点埋深、主要标志层断距及沉积年龄等数据,估算了晚第四纪不同时段断层的滑动速率,结合地层变形情况探讨了该断层晚第四纪的活动特征。结果表明,西大滩隐伏断层自12 275±45aB.P.以来没有发生明显活动,属晚更新世末活动断层;晚更新世以来断层活动偏弱,平均滑动速率为0.024mm/a;除断层活动外,伴随着地层倾斜变形;两者均具间歇活动的特点,最小间隔约6 600a,最大间隔期12 275a。  相似文献   

16.
地震方法确定活动断裂上断点的影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
高景华  徐明才 《地震地质》2012,34(2):338-347
中国不少城市位于较厚的第四纪松散沉积物覆盖区,在这些松散层内,发育了许多具有相当规模的隐伏断裂,用地震方法能够探测到它们的存在。但用地震方法探测到的这些隐伏断裂的上断点是否代表了真正意义的断裂上断点?文中在讨论地震记录分辨率的基础上,探讨了影响地震勘探效果的记录信噪比、地质构造条件以及资料处理和解释方法:为提高地震记录的信噪比和分辨率,需要采取相应的技术措施,如在数据采集过程中,使敷设的地震剖面垂直断裂走向,在保证地震记录具有较高信噪比的条件下,采用合适的覆盖次数和小道间距接收的工作方法有助于获取更浅波阻抗界面的反射波;在数据处理和解释的过程中,准确求取反射波的速度,采用一些提高地震记录分辨率和信噪比的处理技术,摒弃一些混波处理手段,有助于改善利用地震方法探测隐伏断裂上断点的效果。而对于没有波阻抗差异的地层界面,包括隐伏断裂已经错断的那些地层界面,地震方法则难以对其进行探测。即使地震方法探测到的不一定是真正意义上的隐伏断层上断点,其结果依然可为今后钻孔剖面位置的布设、钻孔深度的设计以及断层活动性的判定提供科学依据。  相似文献   

17.
The NE margin of Tibetan plateau outspreads northeastward in late Cenozoic. The west Qinling locates at intervening zone among Tibetan plateau, Sichuan Basin and Ordos block, and is bounded by East Kunlun Fault in the southwest, the north margin of West Qinling Fault in the northeast, and the Longmen Shan Fault in the southeast. The west Qinling has been experiencing intense tectonic deformation since late Cenozoic, accompanying by uplift of mountains, downward incision of rivers, frequent moderate-strong earthquakes, vertical and horizontal motion of secondary faults, and so on. A series of "V-shape" faults are developed in the transfer zone between East Kunlun Fault and north margin of West Qinling Fault. The NWW-NW striking faults include Tazang Fault, Bailongjiang Fault, Guanggai Shan-Die Shan Fault, and Lintan-Dangchang Fault; EW-NEE-NE striking faults include Ha'nan-Qingshanwan-Daoqizi Fault, Wudu-Kangxian Fault, Liangdang-Jiangluo Fault, and Lixian-Luojiapu Fault. Among them, the Southern Guanggai Shan-Die Shan Fault (SGDF)is one of the principle branch which accommodates strain partitioning between the East Kunlun Fault and the north margin of west Qinling Fault. Although some works have been done and published, the geometry of SGDF is still obscure due to forest cover, bad traffic, natural and manmade reworks. In this paper, we collected remote sensing images with various resolutions, categories, imaging time. The selected images include composite map of Landsat image (resolution is 28.5m among 1984-1997, and 14.5m among 1999-2003), Landsat-8 OLI image (15/30m), Gaofen-1 (2m/8m), Pleiades (0.5m/2m), DEM (~25m)and Google Earth image (submeter resolution). After that, we reinforced tectonic information of those images by Envi5.2 software, then we interpreted SGDF from those images. As indoor interpretation fulfilled, we testified indoor interpretation results through geomorphological and geological investigation. Finally, we got fault distribution of SGDF. Conclusions are as follows:First, remote sensing image selection and management is crucial to indoor interpretation, and image resolution is the only factor we commonly consider before, however, things have changed in places where there is complex weather and dense vegetation. Image categories, imaging time and bands selected for compositing in pretreatment and etc. should all be taken into consideration for better interpretation. Second, SGDF distributes from Lazikou town in the west, extending through Pingding town, Zhou County, Huama town, then terminating at Majie town of Wudu district in the east, the striking direction is mainly NWW, and it could be roughly divided into 3 segments:Lazikou-Heiyusi segment, Pingding-Huama segment, and Huama-Majie segment, with their length amounting to 47km, 32.5km, 47km, respectively. The arrangement pattern between Lazikou-Heiyusi segment and Pingding-Huama segment is right-stepping, and the arrangement pattern is left-stepping bending between Pingding-Huama segment and Huama-Majie segment. Third, SGDF controlled magnificent macro-topography, such as fault cliff, fault facet, which often constitute the boundary of intermontane basins or erosional surfaces to west of Minjiang River. Micro-geomorphic expressions were severely eroded and less preserved, including fault scarps, fault troughs, sinistral offset gullies and geomorphic surfaces. Finally, SGDF mainly expresses left-lateral dominated motion, only some short branch faults with diverting striking direction exhibit vertical dominated motion. The left-lateral dominated component with little vertical motion of SGDF is consistent with regional NWW-striking faults as Tazang Fault, Bailongjiang Fault and Lintan-Dangchang Fault, also in coincidence with regional boundary faults such as east Kunlun Fault and north margin of west Qinling Fault, illustrating regional deformation field is successive in west Qinling, and NWW striking faults show good inheritance and transitivity on differential slip rate between east Kunlun Fault and west Qinling Fault. The geometry of SGDF makes quantitative studies possible, and also provides scientific basis for keeping construction away from fault traces.  相似文献   

18.
The Experimental platform of Tournemire (Aveyron, France) developed by IRSN (French Institute for Radiological Protection and Nuclear Safety) is located in a tunnel excavated in a clay–rock formation interbedded between two limestone formations. A well-identified regional fault crosscuts this subhorizontal sedimentary succession, and a subvertical secondary fault zone is intercepted in the clay–rock by drifts and boreholes in the tunnel at a depth of about 250 m. A 2D electrical resistivity survey was carried out along a 2.5 km baseline, and a takeout of 40 m was used to assess the potential of this method to detect faults from the ground surface. In the 300 m-thick zone investigated by the survey, electrical resistivity images reveal several subvertical low-resistivity discontinuities. One of these discontinuities corresponds to the position of the Cernon fault, a major regional fault. One of the subvertical conductive discontinuities crossing the upper limestone formation is consistent with the prolongation towards the ground surface of the secondary fault zone identified in the clay–rock formation from the tunnel. Moreover, this secondary fault zone corresponds to the upward prolongation of a subvertical fault identified in the lower limestone using a 3D high-resolution seismic reflection survey. This type of large-scale electrical resistivity survey is therefore a useful tool for identifying faults in superficial layers from the ground surface and is complementary to 3D seismic reflection surveys.  相似文献   

19.
Abstract Ground penetrating radar (GPR) and high‐resolution shallow reflection seismic surveying were carried out to investigate the subsurface geology in and around the Uemachi Fault zone in the Yamato River area, Osaka, Japan. Shallow drilling in the area showed a major displacement event during the middle Pleistocene. The main Uemachi Fault plane could be clearly imaged on the seismic section, except for the most shallow 200 m. Several shallow normal fault planes with less displacement could be detected on both sides of the fault plane. GPR profiles confirmed the presence of several shallow normal faults within the area near the fault zone. These shallow faults could be followed in all of the GPR profiles crossing the fault zone. The integration of seismic section, GPR profiles and drilling data led to a conceptual model that explains the evolution of the Uemachi Fault system. The proposed model suggests the occurrence of several cycles of small vertical displacement along the deep part of the fault plane caused by the regional east–west compressional stress. The ductile nature of the shallow sedimentary cover and the absence of confining pressure in the shallow part allow for a considerable amount of plastic bending before failing in the shallow sedimentary layers. This bending generates stretching force within the shallow sedimentary cover, which in time, along with gravitational force, gives rise to the formation of the swarm of normal faults within the shallow layers near the fault zone. Some of the detected faults extend to a depth of less than 3 m below the ground surface, suggesting that the last tectonic activity along the fault plane may have occurred recently.  相似文献   

20.
浅层人工地震勘探是探查城市隐伏活动断层最有效的手段之一,然而受近地表探测盲区和探测分辨率的限制,该方法难以获取活动断层超浅层上断点的准确埋深位置。地质雷达探测方法在一定程度上可弥补浅层人工地震勘探的不足。为探索浅层人工地震勘探和地质雷达探测的联合应用效果,分析其在城市隐伏活动断层探测中的应用潜力,选取河南省鹤壁市汤东断裂西支为研究对象,并在冯屯村和前交卸村分别开展联合探测,获取高信噪比的浅层人工地震反射剖面和地质雷达剖面。浅层人工地震勘探揭示的冯屯村处汤东断裂西支上断点埋深为60~70 m,地质雷达探测揭示的上断点埋深约为2.5 m,结合平均沉积速率推测汤东断裂西支在冯屯村的最新活动时代约为25 ka。浅层人工地震勘探揭示的前交卸村处汤东断裂西支上断点埋深为50~60 m,地质雷达探测揭示出汤东断裂西支在前交卸村处未造成近地表约10 m以内的地层断错。研究结果表明,在城市隐伏活动断层探测中,采用浅层人工地震勘探和地质雷达探测相结合的方法,不但可有效确定活动断层的位置,且可进一步约束活动断层上断点的准确埋深,有利于指导后期地震地质勘探中的探槽和钻孔布设。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号