首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hsien-Wang Ou 《Climate Dynamics》2013,40(7-8):1687-1706
We consider a box model of the Arctic system to examine its natural variability pertaining to the decadal Arctic Oscillation (AO) and the multidecadal Low-Frequency Oscillation (LFO). We distinguish the hierarchical order of the winter over the summer open-areas with only the former perturbing the sea-level pressure to effect coupled balances. From such balances, we discern two feedback loops on the winter open-area: a positive ice-flux feedback that elevates its overall variance and a negative buoyancy feedback that suppresses its low-frequency variance to render a decadal AO peak when subjected to white atmospheric noise. This negative buoyancy feedback may also reproduce observed phasing among LFO signals forced by the AMV (Atlantic Multidecadal Variability), thus resolving some outstanding questions. For the summer open-area, its variance is induced mainly by the winter forcings and insensitive to the base state. Its decadal signal merely reflects the preconditioning winter open-area, but its LFO variance is induced additionally and in comparable measure by the winter SAT (surface air temperature) through the latter’s effect on the melt duration and the first-year ice thickness. As such, the summer open-area signal is dominantly multidecadal, which moreover is several times its winter counterpart, consistent with the observed disparity. Although the model is extremely crude, its explicit solution allows quantitative comparison with observations and the generally positive outcome suggests that the model has isolated the essential physics of the Arctic natural variability of our concern.  相似文献   

2.
Summary This study attempts to find possible linkages between the NCP index and the winter temperature variability over Iran. The investigation is based on statistical analysis of simple, partial and multiple correlations and also evaluation of composite maps of the extreme NCP index and maps of correlation between atmospheric variables and the temperature time series. Our results show that the NCP has a strong negative correlation with the winter temperature in Iran. Furthermore, combination of both the NCP and the AO (Arctic Oscillation) indices improve the correlations in all stations, implying both NCP and AO can be considered as major patterns for explaining the Iranian winter temperature variability. The results show that the positive NCP is associated with enhanced precipitation and cloudy conditions, consequently causing below normal temperature over Iran. The anomalies of OLR in this phase are also negative, implying a cloudy sky. For the negative NCP phase these results are completely reversed. The correlation maps indicate that the NCP is negatively/positively correlated with winter Outgoing Long-wave Radiation/precipitation over Iran. The results also show that the SLP and GPH patterns are quite different for the positive and negative NCP phases over Iran. During the negative NCP a small cyclone is formed over the Arabian Sea causing a strong easterly towards Iran. During the positive NCP this cyclone is removed. Our results show that for the positive NCP years an upper-level trough is formed over northern Iran and the eastern Mediterranean. For the negative NCP years this trough becomes weak and is located over central European regions. This trough is closely linked with the winter temperature over Iran. This is expressed by a high correlation between 500-hPa geopotential height at this region and Iranian winter temperature. Authors’ addresses: A. R. Ghasemi, Climate Research Center, Water Engineering Department, Agricultural Faculty, Shiraz University, Shiraz, Iran; D. Khalili, Water Engineering Department, Agricultural Faculty, Shiraz University, Shiraz, Iran.  相似文献   

3.
Nonlinear projections of the Arctic Oscillation (AO) index onto North American winter (December–March) 500-mb geopotential height (Z500) and surface air temperature (SAT) anomalies reveal a pronounced asymmetry in the atmospheric patterns associated with positive and negative phases of the AO. In a linear view, the Z500 anomaly field associated with positive AO resembles a positive North Atlantic Oscillation pattern with statistically significant positive and negative anomalies stretching zonally into central-eastern USA and Canada, respectively, resulting in a cold climate anomaly over northeastern and eastern Canada, Alaska and the west coast of USA, and a warm climate anomaly over the rest of the continent. By contrast, the nonlinear behavior, mainly a quadratic association with AO, which is most apparent when the amplitude of the AO index is large, has the same spatial pattern and sign for both positive and negative values of the index. The nonlinear pattern reveals negative Z500 anomalies over the west coast of USA and the North Atlantic and positive Z500 anomalies at higher latitudes centered over the Gulf of Alaska and northeastern Canada accompanied by cooler than normal climate over the USA and southwestern Canada and warmer than normal climate over other regions of the continent. A similar analysis is conducted on the data from the Canadian Center for Climate Modelling and Analysis second generation coupled general circulation model. The nonlinear patterns of North American Z500 and SAT anomalies associated with the AO in the model simulation are generally consistent with the observational results, thereby confirming the robustness of the nonlinear behavior of North American winter climate with respect to the AO in a climate simulation that is completely independent of the observations.  相似文献   

4.
Arctic climate change in the Twenty-first century is simulated by the Community Climate System Model version 3.0 (CCSM3). The simulations from three emission scenarios (A2, A1B and B1) are analyzed using eight (A1B and B1) or five (A2) ensemble members. The model simulates a reasonable present-day climate and historical climate trend. The model projects a decline of sea-ice extent in the range of 1.4–3.9% per decade and 4.8–22.2% per decade in winter and summer, respectively, corresponding to the range of forcings that span the scenarios. At the end of the Twenty-first century, the winter and summer Arctic mean surface air temperature increases in a range of 4–14°C (B1 and A2) and 0.7–5°C (B1 and A2) relative to the end of the Twentieth century. The Arctic becomes ice-free during summer at the end of the Twenty-first century in the A2 scenario. Similar to the observations, the Arctic Oscillation (AO) is the dominant factor in explaining the variability of the atmosphere and sea ice in the 1870–1999 historical runs. The AO shifts to the positive phase in response to greenhouse gas forcings in the Twenty-first century. But the simulated trends in both Arctic mean sea-level pressure and the AO index are smaller than what has been observed. The Twenty-first century Arctic warming mainly results from the radiative forcing of greenhouse gases. The 1st empirical orthogonal function (explains 72.2–51.7% of the total variance) of the wintertime surface air temperature during 1870–2099 is characterized by a strong warming trend and a “polar amplification”-type of spatial pattern. The AO, which plays a secondary role, contributes to less than 10% of the total variance in both surface temperature and sea-ice concentration.  相似文献   

5.
Partial Least Squares Regression (PLSR) is used to study monthly changes in the influence of the Arctic Oscillation (AO) on spring, summer and autumn air temperature over China with the January 500 hPa geopotential height data from 1951 to 2004 and monthly temperature data from January to November at 160 stations in China. Several AO indices have been defined with the 500-hPa geopotential data and the index defined as the first principal component of the normalized geopotential data is best to be used to study the influence of the AO on SAT (surface air temperature) in China. There are three modes through which the AO in winter influences SAT in China. The influence of the AO on SAT in China changes monthly and is stronger in spring and summer than in autumn. The main influenced regions are Northeast China and the Changjiang River drainage area.  相似文献   

6.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

7.
利用1950—2013年NCEP/NCAR再分析资料和哈德莱中心的海表面温度资料,统计分析了冬季北极涛动 (AO) 对东亚表面温度的影响。研究发现:冬季AO正位相时,东亚大槽减弱,西伯利亚高压减弱,低层风场异常偏南,东亚冬季风减弱,东亚冬季风区温度升高,而负位相时情况相反。冬季高纬度大气变率大,冬季逐月AO与东亚冬季温度的关系表明1月、2月AO分别与东亚表面温度的相关关系皆可持续2个月以上;AO正位相时,西太平洋海温和东亚表面温度均有所升高,由于海洋运动和变化具有缓慢性和持续性,西太平洋海温可以承载长达4个月的AO信号,西太平洋海温可持续影响东亚地区温度,导致AO持续影响东亚表面温度。  相似文献   

8.
利用NCEP/NCAR月平均再分析资料(1958-1997),月平均海表面温度资料(1950-1992)以及月的海冰密集度资料(1953-1995),研究了冬季北极涛动与西伯利亚高压、东亚冬季风以及巴伦支海海冰范围之间的联系。研究结果表明,冬季北极涛动不仅影响北极和北大西洋区域气候变化,并且可能影响冬季西伯利亚高压,进而影响东亚冬季风。当冬季北极涛动处于正位相时,冬季西伯利亚高压和东亚冬季风都偏弱,在西伯利亚南部和东亚沿岸,包括中国东部、韩国和日本,从地表面到对流层中部气温偏高0.5-2℃。当冬季北极涛动处于负位相时,结果正相反。研究结果还表明,冬季西伯利亚高压对北极以及北大西洋区域气候变化没有显的影响,与北极涛动的影响相比,西伯利亚的影响强度和范围明显偏弱。研究进一步揭示了冬季北极涛动可能影响西伯利亚高压的可能机理。冬季西伯利亚高压与动力过程以及从地表面到对流层中部的气温变化有密切的关系。西伯利亚高压的西部变化主要依赖于动力过程,而其东部与气温变化更为密切。冬季西伯利亚高压的维持主要依赖于对流层中的下沉气流,这种下沉气流源于北大西洋区域,其变化受到北极涛动的影响。当冬季北极涛动处于正(负)位相时,气流的下沉运动明显减弱(增强),进而影响冬季西伯利亚高压。此处,冬季北极涛动对同时期的巴伦支海海冰范围有显的影响。  相似文献   

9.
Using NCEP/NCAR reanalysis data, the China rainfall and surface temperature data of the China Meteorological Administration, and the Arctic Oscillation (AO) indices of NOAA, the author investigates relationships between the AO and the precipitation and temperature over China. There exists a good relationship between the AO index in December and the succeeding January precipitation over South China, indicating that when the December AO index is positive (negative), the January precipitation over South China increases (decreases). A remarkable negative correlation between the December AO index and the January surface temperature also exists over South China, indicating that when the December AO index is positive (negative), the January temperature over South China drops (rises). The occurrence of this anomalous climate is related to the anomalies of the atmospheric circulation systems. The December AO greatly influences circulation anomalies in January. A positive phase of the AO is found to lead to a stronger subtropical jet over the south side from the Iran Plateau to the Tibetan Plateau. Consequently, it results in a deepening pressure trough around the Bay of Bengal, which transports the warm and wet air to South China continuously. The Siberian High in January is stronger and extends farther southeastward. It results in continual cold air at 1000 hPa pouring into South China, inducing low temperature. Cooperating with the trough of the Bay of Bengal, anomalous precipitation occurs over South China. For the negative phase of the December AO, the opposite situation is observed.  相似文献   

10.
东北地区冬季气温与北极涛动年代际关系研究   总被引:15,自引:4,他引:15  
利用中国160站气温资料、北极涛动指数资料及关国NCEP/NCAR再分析资料中月平均海平面气压场、高度场、风场资料,分析了东北地区冬季气温、冬季北极涛动的年代际特征及其关系。结果表明:在年代际时间尺度上,两者之间存在显著正相关。冬季北极涛动处于低(高)指数期,东北冬季气温为持续冷冬(暖冬)期。可能影响机制是:在地面,冬季北极涛动处于低(高)指数期时,西伯利亚高压增强(减弱),亚洲大陆偏北冬季风增强(减弱),东北为持续冷冬(暖冬)期;在对流层中层,冬季北极涛动处于低(高)指数期时,东亚大槽加深(减弱),贝加尔湖以西以北脊增强(减弱),环流呈经向(纬向)型发展,东北对流层中层偏北风增强(减弱),东北为持续冷冬(暖冬)期。  相似文献   

11.
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the “memory” of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.  相似文献   

12.
Synthesis analysis and singular value decomposition (SVD) methods were used to study the impact of surface air temperature (SAT) over Asian-Pacific region on the summertime northeastern Asian blocking high (NABH) with NCEP/NCAR Reanalysis Data.The results showed that 500 hPa geopotential height and SAT fields over Asian-Pacific region shared the similar pattern of East Asian Pacific (EAP) wave train;there was steady remote response relationship between the EAP wave train in summer and the "+-+" pattern of tropical SAT in zonal direction from former winter to summer;there were two relative negative(positive) Walker circulations over the tropical Indian Ocean and Pacific when being more(less) summertime NABH. The influence of sea surface temperature anomaly (SSTA) on the summertime NABH was possibly as follows.The special distribution of SSTA in tropical zonal direction continuously forced the tropical convection and zonal circulation from former winter to summer,and led them to act anomaly.Finally the abnormal conditions were transported to middle-high latitudes through EAP wave train and yielded the advantageous or disadvantageous atmospheric circulation background for the summertime NABH.  相似文献   

13.
冬季平流层北极涛动对江南气温的影响   总被引:3,自引:2,他引:1  
利用ERA—interim及NCEP—DOE两种再分析资料,分析了冬季北极涛动(Arctic Oscillation,AO)与我国江南地区地表气温相关的时空结构。结果表明:1)2月30hPa的Ao指数与江南地区地表气温的同期相关系数最高,这与AO指数和江南地区地表气温的标准差均在2月极大有关。2)30hPa的正AO事件加强时,贝加尔湖地区对流层易出现显著的正位势高度异常,有利于东亚地区出现向南、向下的异常风场,与之对应,西伯利亚高压向南扩展,有利于北方冷空气南侵至我国江南地区,造成局地气温负距平;反之亦然。  相似文献   

14.
春季北极涛动对盛夏长江流域地表气温的影响   总被引:2,自引:0,他引:2  
张乐英  徐海明  施宁 《大气科学》2015,39(5):1049-1058
本文基于1958至2002年的ERA-40 月平均再分析资料,利用年际增量方法分析了春季北极涛动(Arctic Oscillation,简称AO)与我国夏季长江流域地表气温的关系。结果表明,在扣除前期冬季ENSO影响后,5月AO指数与8月长江流域地表气温存在显著正相关。通过回归分析发现,5月AO可通过影响中低纬度的海气相互作用进而影响8月长江流域地表气温。当5月AO处于正位相时,在(10°~15°N)及赤道附近产生异常下沉气流,对应着西太平洋局地Hadley环流减弱,对流层底层出现了异常的反气旋性辐散气流。与之对应,赤道西太平洋地区出现了显著的东风异常。由于该东风异常位于5月气候平均的局地海表面温度(SST)极大值中心位置上,该东风异常可通过平流作用使得高海温不断地向西堆积,最终造成赤道西太平洋SST出现显著正异常。当该SST正异常持续至8月时,它通过Gill响应(Gill,1980)在其西北侧激发出气旋性异常环流,它有利于西太平洋副热带高压在我国长江流域的维持,进而造成长江流域地表气温正异常。反之,则相反。  相似文献   

15.
Under recent Arctic warming, boreal winters have witnessed severe cold surges over both Eurasia and North America, bringing about serious social and economic impacts. Here, we investigated the changes in daily surface air temperature (SAT) variability during the rapid Arctic warming period of 1988/89–2015/16, and found the daily SAT variance, mainly contributed by the sub-seasonal component, shows an increasing and decreasing trend over eastern Eurasia and North America, respectively. Increasing cold extremes (defined as days with daily SAT anomalies below 1.5 standard deviations) dominated the increase of the daily SAT variability over eastern Eurasia, while decreasing cold extremes dominated the decrease of the daily SAT variability over North America. The circulation regime of cold extremes over eastern Eurasia (North America) is characterized by an enhanced high-pressure ridge over the Urals (Alaska) and surface Siberian (Canadian) high. The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region, while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation (PDO)–like sea surface temperature (SST) anomalies over the North Pacific. The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming, reduced the occurrence of extreme cold days, and possibly resulted in the decreasing trend of daily SAT variability in North America. The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America. Therefore, the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.  相似文献   

16.
In recent decades the Arctic surface air temperature(SAT) in autumn has been increasing steadily. In winter, however, instead of a linear trend, the Arctic SAT shows an abrupt change that occurred in 2004. During the years from 1979 to 2003, the first principle component(PC1) of winter Arctic SAT remains stable, and no significant increasing trend is detected. However, the PC1 changes abruptly from negative to positive phase in the winter of 2004. The enhanced Siberian high may have contributed to this abrupt change because the temporal evolution of Arctic temperature correlates significantly with sea level pressure variation in the northern Eurasian continent, and the atmospheric circulation anomaly related to the Siberian high from 2004 to 2013 favors a warmer Arctic. With the help of the meridional wind anomaly around the Siberian high, warmer air is transported to the high latitudes and therefore increases the Arctic temperature.  相似文献   

17.
Summary. Climatic fluctuations in KwaZulu-Natal, southeastern South Africa, are analysed using statistical techniques. Moist easterly winds sweep in from the Indian Ocean during all seasons except winter, producing a balance between evaporative losses and precipitation. The seasonal cycle is unimodal with a peak of rainfall and temperature in the summer months (December to February) with a 1–2 month lag for streamflow and vegetation growth. Rainfall and temperature departures in recent decades exhibit a 3 year cycle and a 3–6 month persistence of cool/wet or warm/dry phases. The predictability of summer rainfall, temperature, crop yield, inflow to dams and malaria incidence is explored. Multivariate linear regression models with lead-times of one season account for two-thirds of the variance in most cases. Climatic signals which enable predictability include winds over the tropical east Atlantic and north Indian Ocean. El Ni?o signals from tropical Pacific sea surface temperatures and the Southern Oscillation Index are also important predictors for KwaZulu-Natal’s climate. These relationships suggest that local circulation responses to large scale tropical-polar temperature gradients govern climatic fluctuations over KwaZulu-Natal. Received August 27, 1997. Revised November 10, 1997  相似文献   

18.
利用1951-2012年NCEP/NCAR全球月平均500 hPa高度场、气温场等再分析资料,北极涛动(AO)指数,北半球及其4个分区的极涡指数等资料,分析极涡和AO对北半球特别是欧亚大陆冬季气温异常分布的影响。北半球极涡面积指数与北半球气温相关场呈由北向南的“+、-”分布,显著正相关中心位于极区,显著负相关中心位于欧亚大陆中高纬度地区;AO指数与气温的相关场分布与此反位相。极涡各分区面积指数体现与各大洲气温显著相关的地域特征,尤其是亚洲极涡面积指数比AO的相关区域更偏向亚洲和中国东部及沿海地区,能表征亚洲大陆冬季风向中低纬度爆发的某些特征。2006年以来AO指数呈较明显的下降趋势,北半球、亚洲区极涡面积指数呈显著的上升趋势,这是有利于欧亚大陆近几年连续冬季气温异常偏低的年代际背景;2009-2011年北半球欧亚大陆冬季大范围低温事件,不仅与冬季AO负位相明显变强有关(2011年除外),与北半球以及亚洲区极涡面积指数偏大联系更为密切,亦表明该区域冬季变冷的自然变率明显增强。  相似文献   

19.
2015/2016年冬季北极涛动异常活动及其对我国气温的影响   总被引:2,自引:2,他引:0  
司东  马丽娟  王朋岭  王艳娇  聂羽  孙冷 《气象》2016,42(7):892-897
2015/2016年冬季,北极涛动(AO)季内变化特征明显。2015年12月,AO处在正位相,而到了2016年1月AO突然由正位相转为强负位相,导致极区冷空气南下,北半球和我国气温由暖转冷。AO由正位相转为负位相主要与北大西洋强风暴活动有关。2015年12月末,北大西洋上空有一气旋式强风暴出现,强风暴东侧西南气流将北大西洋上空大量的暖湿空气带向北极,导致北极气温迅速升高。北极气温迅速升高使得极区的位势高度场由偏低转为偏高,是导致AO由12月的正位相转为1月负位相的主要原因。  相似文献   

20.
崔静  杨双艳  LI Tim 《气象》2021,(1):49-59
基于1979—2016年NCEP-NCAR逐日再分析资料研究了热带季节内振荡(MJO)和北半球冬季高纬地区地表气温(SAT)之间的联系.利用实时多变量MJO(RMM)指数,将MJO分为8个位相,其中位相2(位相6)对应于位于印度洋地区的正(负)对流.不同MJO位相下的SAT合成结果显示MJO第二位相后的5~15 d,北...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号