首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为进一步认识青藏高原山地低层风场特征、长期变化规律,利用2008-2012年青藏高原东南缘云南大理站边界层铁塔和风廓线雷达的长期观测资料,初步分析了该地区低层风场垂直结构及其变化特征。结果表明:(1)从地面到高空,风速、风向频率分布随高度的增加而变化,2~400m高度风速基本为2级,盛行风向为偏东风,这说明边界层铁塔和风廓线雷达的风速、风向具有连续性。(2)从垂直高度上看,风速存在明显季节变化特征,冬季风速较大,夏季风速较小;日变化结构随高度的升高表现形式明显不同,20m以下为单峰型,100~1500m为双峰型,2000m以上日变化不明显;平均风速逐月变化,20m以下为单峰型,100~1000m为双峰型,1500m以上为单峰型。(3)纬向风600m以下出现东西风交替的日变化,经向风在2~20m高度全天为南风,100m高度以上午后至日落为南风、其余时段为北风,南风由高空向低层传递。  相似文献   

2.
利用风廓线雷达在延吉市开展了边界层风场的探测研究,根据2012年4个月逐日的边界层风场探测资料,分析了延吉市大气边界层风场的时空分布特征,得到了逐月的高空风廓线图。结果表明:1000m以下,水平风速和垂直风速随高度均呈现出增加的趋势,地面风速最小,750-1000m高度处存在明显的风切变层;2月和7月高空水平风速随高度的增加而增加,4月和10月高空水平风速变化呈单峰型的变化趋势;2月垂直风速随高度的增加逐渐增加,7月随高度的增加逐渐减少,4月和10月随高度呈双峰型的变化趋势;各月在1000~2000m高度垂直风速较小;各月水平风除个别高度外均以西风或偏西风为主导风向,垂直方向以下沉气流为主。  相似文献   

3.
叶鑫欣  张宏升  霍庆  康凌 《气象科学》2011,31(4):534-541
本文利用2010年夏季福建省三明市开展的大气扩散实验资料,研究了大气边界层风廓线雷达在福建丘陵地区的适用性,并探讨了风廓线雷达探测的误差特征和修正方法。结果表明:大气边界层风廓线雷达水平风场的探测结果在300~2 000 m高度范围的偏差与高度和风速具有一定统计关系;通过与100 m气象铁塔水平风场资料对比,说明风廓线雷达对丘陵地区低层大气风场的探测具有一定局限性。经过修正的风廓线雷达探测结果可以较好地反映实验区域大气边界层水平风场的垂直结构。  相似文献   

4.
王天义  朱克云  张杰  刘煦 《气象科技》2014,42(2):231-239
利用成都地区2010年8月和北京沙河地区2011年7—8月风廓线雷达以及多普勒天气雷达的风廓线探测资料,结合对应时段的天气现象相关记录,通过对比分析得到以下结论:①弱降水条件下,在300~2100m高度内,风廓线雷达与多普勒天气雷达探测具有很好的相关性,风向相关系数平均值为0.596,风速相关系数平均值为0.736,在做预报时两者可以同时应用,互为补充;②强降水天气条件下,风廓线雷达与多普勒天气雷达探测的风向、风速变化趋势基本一致,特别是在300~2100m之间各个高度上风向、风速相关性较好,风向相关系数平均值为0.573,风速相关系数为0.508,且风廓线雷达比多普勒天气雷达探测到的各层风向、风速变化更为详细、直观;③阴天条件下风廓线雷达与多普勒天气雷达的风向、风速相关性低层比高层好;④晴天条件下,风廓线雷达更适合用于预报和监测天气。  相似文献   

5.
为进一步加深南北气候过渡带上山地丘陵地区的风场认识,利用淮南2015年3月至2016年2月ST(Stratosphere-Troposphere)风廓线雷达的探测资料,分析了该地区20 km高度内风场的变化特征及垂直结构。结果表明:淮河流域850 hPa、700 hPa、500 hPa、100 hPa等压面高度上,风场有明显的垂直变化,风速及其波动幅度随春、夏、秋、冬先减小后增大,且随高度增加,夏季最小、冬季最大的季节规律逐渐增强;风场的垂直分布存在差异,在中低层以下,以小于10 m/s的风为主,风向转换多,中低层以上10~25 m/s的偏西风居多;年平均风场结构为低层以5 m/s北风为主,到2 km左右向西偏转,风速小于10 m/s,在5 km高度处形成15 m/s的西风,且风速持续增大,10 km左右达到25 m/s后逐渐减小,到15 km左右风向顺时针向北偏转,直到20 km附近与低空风场相近。  相似文献   

6.
应用四川省名山站2015~2017年6月21日~7月31日每日四个时次的西南涡加密探空资料与风廓线雷达资料,对比分析了在对流层低层风探测上两种资料的差异。结果表明:名山站风廓线雷达资料有效探测高度约为4200m;风廓线雷达和探空测得的风场廓线形状总体接近,两者的风速偏差较小,仅在个别层次和时次偏差大,风速的偏差大小与风廓线风速大小存在正相关关系,除少数情况外风廓线雷达测得的风速均大于探空;两者风向差值随高度的变化规律与风速相反,在中高层较小,低层较大;除01:15时次的500m高度外,其余时次自低层到高层两者观测到的主风向均由偏东北风变为偏西南风,一致性较好;U风和V风散点分布主要沿对角线呈棒槌型,V风质量优于U风,19:15这一时次的风廓线雷达探测U风相对探空资料存在明显系统性正偏差;风廓线雷达探测高度受降水影响较大,在07:15和13:15时次有降水时其探测高度明显高于无降水时。   相似文献   

7.
利用2011年10月15—24日在古尔班通古特沙漠腹地系留气艇边界层试验的探测资料,分析了沙漠腹地近地层风、温、湿等气象要素廓线垂直分布特征及其变化情况,结论如下:(1)20时—08时存在逆温,08时逆温最强,逆温强度为2.85℃/100 m,逆温层高度为700 m,之后逆温逐渐消失;夜晚近地层湿度明显大于上层大气,在100 m高度差内,湿度先快速减小再缓慢增大,与白天相反,20时近地面出现逆湿,1 100 m高度湿度发生明显切变;逆温层以上风速随高度变化呈多峰态,逆温层范围内风速增大趋势明显,900~1 100 m之间存在200 m厚的恒风区,1 100 m以上风速再次增大,白天的风速小于夜间。(2)风速波动范围大约为2~8 m/s,近地面100 m范围内风速随高度快速增大,风向由东南风向南风转变,600~900 m之间风速变化减缓,风向由从南风逐渐向东风转变,以东南风为主,风速与风向同步改变。(3)600 m以下随温度升高湿度快速减小,600~1 100 m之间又持续增大,1 100~1 500 m之间呈波动变化的趋势,1500 m增大明显。(4)风切变指数夜晚大于白天,最大值在23时(20.88),最小值在中午14时(0.97),平均风切变指数为9.61。混合层厚度平均为125.88 m。  相似文献   

8.
利用2016年8月28日至9月2日北京市朝阳区气象观测站激光测风雷达、风廓线雷达和GPS探空仪同步观测数据,对比分析三种测风仪在城市复杂下垫面条件下边界层不同高度处的测风性能。结果表明:(1)激光测风雷达与GPS探空仪测风结果具有较好一致性,风速、风向的相关系数分别为0. 66~0. 96、0. 71~0. 98,其中风速平均绝对误差小于2 m·s-1,风向误差在20°之内。(2)风廓线雷达资料的精度相对较差,与GPS探空仪的风速、风向相关系数分别为0. 66~0. 91、0. 55~0. 86,误差随高度呈现先减后增的垂直分布特征。其中,400~1000 m高度范围两种资料的吻合度最高,相关系数在0. 80以上,为仪器最佳测量范围;此外,风廓线雷达的风速整体高于GPS探空仪,两者最大偏差可达4 m·s-1左右,风向平均误差最大可达30°。(3) GPS探空仪的工作方式及测量结果也存在不足,一是观测频次较低,难以详细、精准地描述边界层风场结构的变化过程;二是当存在垂直风切变时,探测初期具有明显滞后性,由当前状态转变为真实的风场示踪物需要一定时间。  相似文献   

9.
利用2013年重庆多普勒天气雷达(SA)和风廓线雷达(TWP8-L)观测的垂直风廓线数据,对晴空、弱降水、一般性降水和强降水四种不同天气条件下垂直风廓线特征及其演变情况进行了分析。结果表明:(1)风廓线雷达的探测高度随降水增加逐渐增加;(2)晴空天气条件下,边界层(1 km以下)风向存在明显的日变化,夜间以偏东气流为主,白天以偏南气流为主,高空(3 km以上)为一致的偏西气流,风速较小;(3)弱降水天气条件下,边界层风向以偏东气流为主,相对较为杂乱,高空与晴空一致,中高层(1~3 km)以偏南气流为主;(4)一般性降水天气条件下,低层与弱降水较一致,而高空出现较一致的西南气流,有利于水汽输送,同时垂直切变具有较好的单一方向性,较有利于对流的发展和维持;(5)强降水天气条件下,风廓线雷达和多普勒雷达观测的垂直风廓线较为一致。降水前期风向随高度的增加逐渐由偏东气流转为偏西气流,有利于对流的触发;降水期间风切变具有很好的单一方向性并在中低层出现低空急流区,有利于对流系统的维持,同时西南气流厚度加深,也有利于水汽的输送;降水结束期风速减小,中低层风向也逐渐转为偏北气流,对流系统逐渐消亡。  相似文献   

10.
利用实时多普勒天气雷达、边界层风廓线雷达和自动站资料对超强台风“威马逊”第4次登陆广西沿海时台风结构的演变特征进行研究,结果表明:台风眼区气压呈“漏斗”形变化,具有气压低、风速弱、空气干而暖的特征;登陆过程中眼区保持圆形,半径约为30 km,是典型强台风结构;天气雷达径向速度大风区具有非对称性,右象限大于左象限;风廓线雷达水平风场能够精确、直观地描述台风不同部位经过测站时的垂直结构特征,从低层到高层风向先后经历了“东北风—东风—东南风—南风”的转变过程,风速整体上呈现随高度先增大后减小的特点,其垂直速度和大气折射率结构常数(C2n)能够很好地反映台风的结构及其云和气流的变化特征;两种雷达风场产品的风向一致,但是VWP产品的风速比风廓线雷达的要小,VWP产品出现无效数据时,可以用风廓线雷达产品作为补充。  相似文献   

11.
谭晓伟  端义宏  梁旭东 《气象学报》2013,71(6):1020-1034
利用ARW-WRF模式,以垂直方向40个模式层(对低层加密)、水平方向最高1 km的分辨率,对台风桑美(2006)进行数值模拟,模拟结果与实况基本一致。基于台风桑美(2006)1 km分辨率的模拟结果,对台风低层(海面或地表以上1500 m以下)风场结构进行了分析。结果表明,在台风登陆前,其最大风速半径附近存在水平风速在垂直方向有很强变化的风廓线,该类型风廓线的最大风速高度有明显变化,表现出类似急流的特征;而台风登陆后,其水平风速垂直变化明显减弱,即风廓线类型发生较大变化;另有一种水平风速在高层少变的风廓线类型在台风中是普遍存在的。还根据高层和低层两个切变因子,将台风登陆前的风廓线分为急流型、普通型和过渡型,并进一步分析各类风廓线在台风中出现的位置和急流高度。对急流型风廓线的形成原因也进行了初步探讨,结果表明,超/次梯度风在垂直方向上的变化是形成急流型风廓线的原因,而外围绝对角动量的输送在其中起关键作用。  相似文献   

12.
利用2008—2014年CFL20G风廓线雷达数据对科尔沁草原高空风场垂直特征进行研究。主要对高空三维风场季节变化的统计学特征、典型高度层上的变化规律及垂直高度上的日变化规律进行分析。分析发现:四季中高空20~40 m/s风速出现的频率最高,2900~18 000 m科尔沁草原高空以偏西风为主。垂直高度上水平风速呈一波一谷型变化,随着高度的增加,高层水平风速开始增大的时间有所推后。12 600 m及以下各层平均风速最小的季节为夏季,最大的季节为冬春两季;19 000 m平均风速最小的月份为12月,风速最大月份为8月。垂直速度在5100 m以下有明显日变化,1500 m和2900 m有较为明显的年变化,最大值出现在春夏交接的4—6月,最小值出现在12月,5100 m以上的垂直速度没有明显的年变化。  相似文献   

13.
新疆百里风区风廓线观测分析   总被引:2,自引:1,他引:1  
利用2009年3月25日至4月8日在新疆百里风区十三间房气象站观测取得的风廓线资料,分析了该地区低空风场的平均日变化、逐日变化以及强风天气条件下大气风场特征。研究表明:①十三间房地区观测期间纬向风主要盛行西风气流,经向风以北风为主,在大风天气条件下经向北风气流明显大于同时间纬向西风气流。②受七角井山口狭管效应的影响,该地区1500m高度以下水平风速总体大于其上风速。③日、夜平均廓线分析表明,夜间风速大于白天,但二者随高度的变化趋势基本相同,1500m以下,水平风速随高度的升高呈减小趋势,1500m以上,随高度升高呈增大趋势。④Airda3000Q型边界层风廓线雷达可获得时间和空间分辨率较高的风场资料,通过分析其探测到的水平风廓线资料,可清晰地监测大风天气的发生和变化过程。  相似文献   

14.
利用2011年12月~2013年3月CFL-03型风廓线雷达在乌鲁木齐市的风探测数据与同期的常规探空数据开展了比对分析,从而对风廓线雷达探测数据的可靠性和探测能力给予了评估。结果表明,受乌鲁木齐四季不同的气候背景影响,CFL-03型风廓线雷达的数据获取率在夏季最高,在冬季最低,80%的数据获取率等值线夏季、冬季各自达到的高度分别为4500m和1980m;受低空地物回波、探测盲区等因素影响,240m以下风廓线雷达探测的风速误差较大,240m以上风廓线雷达四季探测的风速普遍小于实况,误差在-1~0m/s之间的出现频率最高,介于28.8%~31.8%,且在四季最大频率出现的高度有所差异,总体来看夏季风速误差相对较小;风向误差总体在-22.5°~0°之间的出现频率最高,且随着高度增加频率增加;风廓线雷达风速的探测能力优于风向,二者与实况的相关系数各自为0.9左右和0.6~0.8;通过长时间序列的风速、风向资料的比较,说明CFL-03型风廓线雷达能够较为准确地反映冬季天气过程的演变,且能够较为精细地刻画夏季短时强降水天气过程中高低空气流的变化特点。在综合考虑低空地物回波、探测盲区因素以及高空气球探空飘移等多种因素影响的情况下,可见CFL-03型风廓线雷达对乌鲁木齐大气环境和天气过程拥有较可靠的监测能力。  相似文献   

15.
王志春  植石群 《气象科技》2014,42(4):678-681
根据Airda3000Q型边界层风廓线雷达获取的台风启德(1213)强风观测数据,分析了强风条件下的近地层风廓线特征,发现以下观测事实:台风中心经过前后风速呈现尖耸的"M"形双峰变化,台风眼壁强风区风速最大,台风眼区经过前后100m高度极大10min平均风速分别为35.7、35.4m/s,眼区经过时出现最小风速为16.2m/s;而风廓线幂指数α则呈现比较平缓的"M"形双峰变化,风廓线幂指数α出现极大值的时间比风速出现极大值的时间分别提前约1h和延后3.5h,台风眼区经过时风廓线幂指数α接近最小,甚至出现负值;台风影响期间,风的垂直变化主要发生在200m以下的低空,风的垂直变化率有波动,最大值出现在台风眼壁强风区和台风中心过境后的外围大风区。  相似文献   

16.
为更好地了解风廓线雷达低层风速观测的准确性,利用356 m气象梯度塔和风廓线设备在深圳石岩气象综合观测基地进行了一次成功的风速观测对比试验(时间为2017年6月1日—8月15日)。试验对两种探测设备测得的风速资料进行了不同时次和不同高度的对比,结果表明:由两种手段获得的所有4层(100、160、300和350 m)匹配高度上风速平均值一致性很好,30 min相关系数在0.6以上,风廓线雷达探测的风速相对偏小。使用矢量法对4层高度上的风向资料进行平均,得到风向的30 min和日平均值,两者的相关系数都在0.75以上。6月12—13日"苗柏"台风影响深圳期间,两者的风速风向变化趋势一致,较好地刻画了台风的变化过程。  相似文献   

17.
利用2013年1—9月重庆多普勒天气雷达(CINRAD/SA)和风廓线雷达(TWP8-L)观测到的垂直风廓线数据,就不同高度、不同时间及不同降水条件下二者的一致性进行了分析。研究结果表明:(1)多普勒雷达探测的风廓线资料与同期的风廓线雷达资料在垂直分布和时间变化上表现出较一致的变化趋势,两者探测的风向和风速的相关系数分别为0.90和0.75;(2)风廓线雷达和多普勒雷达探测的风向相关性(标准误差)随高度增加(降低)而逐渐增加(降低),两者间的一致性随高度不断增强。风速间的相关性也随高度增加而增加,但标准误差变化不大,稳定在2~4 m·s-1之间。在不同月份表现出类似的特征,特别是在汛期(6—9月)风切变从底层到高空具有很好的一致性,呈顺时针旋转;(3)两种探测资料间的一致性受降水影响明显,相对于降水偏少的冬季(1月和2月),在以小到中雨为主的春季(3—4月)以及中到大雨的主汛期(6—9月),多普勒天气雷达和风廓线雷达探测风廓线间的一致性得到明显增强,特别是在主汛期两者间的一致性是最高的;(4)多普勒雷达和风廓线雷达各高度层平均风向随高度的变化一致性较好,在低层(4 km)和高层(5 km)风向均随高度顺时针旋转。  相似文献   

18.
利用2008-2014年CFL20G风廓线雷达数据对科尔沁草原高空风场垂直特征及变化进行研究。主要对高空三维风场季节变化的统计学特征、典型高度层上的变化规律及垂直高度上的日变化规律进行分析。分析发现:四季中高空20-40m/s风速出现的频率最大,3000米至18000米科尔沁草原高空以偏西风为主。垂直高度上水平风速呈一波一谷型变化,随着高度的增加,高层水平风速开始增大的时间有所推后。12600米及以下各层平均风速最小的季节为夏季,最大的季节为冬春两季;19000米平均风速最小的月份为12月份,风速最大月份为8月份。垂直速度在5500米以下有明显日变化,1500米和3000米有较为明显的年变化,最大值出现在春夏交接的4-6月份,最小值出现在12月份,5000米以上垂直速度没有明显的年变化。  相似文献   

19.
利用2018年1月1日至12月31日在北京国家综合气象观测实验基地获得的风廓线雷达资料和同时期在河北香河的华北香河全大气层野外科学观测研究站获得的多普勒声雷达资料,比较分析北京城区和远郊区的低层(0~600 m)大气风场特征。结果表明:水平风速随高度增加而增大,同一高度层,远郊区的平均水平风速大于城区,且受湍流活动影响,城区和远郊区水平风速日变化趋势均为白天小于夜间。春、夏季城区风向受局地山谷风影响显著,以偏西南偏南气流为主,城区和远郊区秋冬季受冷空气活动影响,以西北风为主,且水平风向日变化特征具有季节性差异。远郊区低层大气垂直速度分布特征四季相同,正、负速度出现频率相当,日变化趋势为单峰型;城区冬春季有差异,在390 m高度以下正速度出现频率明显大于负速度,且日变化趋势在四季差异较大。北京城区和郊区风场特征差异与其他特大城市相比无特殊性,主要受大气环流、局地地形、下垫面环境等因素影响。  相似文献   

20.
利用乌鲁木齐市晴天CFL-03型风廓线雷达观测资料,分析了边界层日变化特征。得出结论如下:边界层结构季节变化明显。冬、春季300~600m以下风速较小,小于3m/s,且愈近地面风速愈小;以上风速大、风向恒定,基本为东南大风。夏季和秋季风速比冬季和春季小,流场特征较复杂,水平风速和风向变化较活跃,存在明显的风切变。折射率结构常数春、秋和冬季比夏季分别小1个、3个和1~3个量级;夏季最大,集中在10~(-16)~10~(-13) m~(-2/3)之间。春、夏和秋季晴天湍流动能耗散率量级分别在10~(-6)~10~(-2) m~2·s~(-3)、10~(-4)~10~(-3) m~2·s~(-3)、10~(-6)~10~(-3) m~2·s~(-3)之间;白天比夜间约大1个量级。晴天折射率结构常数和湍流动能耗散率日变化特征与风场日变化特征有较好地对应关系,即湍流发展旺盛的区域与风速较大的区域相一致。风廓线雷达资料反演的湍流动能耗散率对春季和夏季边界层结构日变化演变特征的监测较好。夏季夜间稳定边界层约400~500m,残余层可达到约1800m,对流边界层可发展到约2500m,混合层约2200m,夹卷层约300~400m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号