首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
一种考虑挡土墙变形的深基坑非线性土压力方法   总被引:3,自引:1,他引:3  
李蓓  赵锡宏 《岩土力学》2004,25(Z2):453-458
基于深基坑墙后主动区土体应变状态模式的假定,采用反映墙后主动区土体应力-应变性状的卸荷应力路径试验确定的应力-应变关系,建立考虑挡土墙变形的非线性土压力的计算公式;就该公式的特点、参数的物理意义及其确定进行讨论;并对一简单算例进行计算,计算结果能反映土压力与挡墙位移的非线性关系以及土压力沿深度的非线性分布,得到墙后主动区土体达到主动极限状态所需的位移与深度的关系,计算结果比较满意.表明所建立的方法的合理性、可行性和适用性.  相似文献   

2.
填土水平墙背竖直光滑的挡墙,墙后土体处于以自重应力和水平应力为主应力的应力状态。实际工程中,挡墙背面与土体存在一定的摩擦及黏结力作用致使挡墙附近土体中的主应力发生偏转,此时,经典朗肯土压力理论不再适用。本文对挡墙附近土中的主应力状态进行旋转处理,通过分析墙后填土中应力状态摩尔圆,得到了考虑墙土摩擦和黏结力作用的黏性填土挡墙主被动土压力计算公式,分析了填土内摩擦角与墙土摩擦角对土压力的影响,使用算例将本文方法所得结果与现有黏性土土压力计算方法所得结果进行了对比分析。结果表明,朗肯土压力公式是本文所得计算公式的特例;随着墙土摩擦角和内摩擦角的增加,被动土压力逐渐加快增大;主动土压力随着内摩擦角的增加而减小;当内摩擦角较小时,主动土压力随着墙土摩擦角的增大不断减小,当内摩擦角较大时,主动土压力随着墙土摩擦角的增大先减小后增大;土内摩擦角的影响大于墙土摩擦的影响;相对于现有方法计算结果,本文方法所得主动土压力较大,被动土压力较小,墙土摩擦越大,2种方法所得结果的差值越大,土黏聚力还会加大这一差值。本文方法考虑了墙背土体主应力方向偏转的客观事实,所得计算结果将更符合实际情况。  相似文献   

3.
非极限主动土压力计算方法初探   总被引:5,自引:2,他引:3  
卢坤林  杨扬 《岩土力学》2010,31(2):615-619
针对未达到极限位移的刚性挡土墙,提出了一种简单可行的主动土压力计算方法。根据反映墙后主动区土体应力-应变性状的卸荷应力路径试验确定的应力-应变关系,建立非极限状态摩擦角与墙体位移的关系。对于未达到极限位移的挡土墙,结合已取得的位移与摩擦角之间的关系,采用与滑裂面相平行的微条对墙后滑动楔体进行划分,对微条进行受力分析,建立平衡方程,推导了滑裂面的倾角,从而得到非极限主动土压力计算公式。随后与一例模型试验数据作了对比分析,计算值与实测值基本吻合,仅在墙下部1/3墙高范围内存在一定的差距。研究表明,所提出的计算方法能够用于计算处于非极限状态下挡土墙的土压力,具有一定的理论意义和工程参考价值。  相似文献   

4.
Coulomb土压力理论的两种解法   总被引:2,自引:0,他引:2  
李兴高  刘维宁 《岩土力学》2006,27(6):981-985
采用极限平衡变分法和Culmann分析方法,对土压力问题进行了研究。在极限平衡变分法中,以滑动体静力平衡的2个力的平衡方程为基础,引入Lagrange乘子,将以变分学观点来描述的主动土压力和被动土压力问题,转化为确定含有2个函数自变量的泛函极值问题。依据泛函取极值时,必须满足Euler方程,得出了主动土压力和被动土压力取极值时墙后土体沿平面滑动破坏的结论。在Culmann分析方法中,沿用了Coulomb土压力理论关于平面滑动破坏的假定,而在推导土压力计算公式的过程中,仅利用了滑动体沿某一特定方向的一个力的平衡方程。与目前通行的Coulomb土压力公式的证明过程相比,Culmann分析方法更为简洁。  相似文献   

5.
考虑土拱效应刚性挡墙土压力研究   总被引:6,自引:0,他引:6  
彭述权  周健  樊玲  刘爱华 《岩土力学》2008,29(10):2701-2707
基于库仑土压力理论,假定刚性挡墙后主应力拱迹线为抛物线,推导了主、被侧土压力系数和水平微分单元间摩擦系数的理论公式,得到改进的主、被动土压力计算公式。研究表明:考虑土拱效应计算结果与模型试验结果吻合比较好。主动极限状态下,土体内摩擦角越小,墙土接触面上外摩擦角越大,土拱效应越明显,主动土压力合力作用点越上移;被动极限状态下,土体内摩擦角和墙土接触面上外摩擦角越大,土拱效应越明显,被动土压力合力点越往下移。  相似文献   

6.
对于土石坝的坝基中土体应力-应变关系的求解,由于非自由地表以及土体所受水平正应力变化的影响,理想一维剪切梁模型方法并不适用。利用下覆饱和砂土地基的土石坝离心振动台试验,分析了不同输入地震峰值下非坝体覆盖区地基、坝中、坝趾处土体加速度的响应规律,得到了坝基中上部土层动土压力在水平向的变化特征,提出了考虑水平向动土压力影响的坝基土体剪应力-剪应变反演计算方法,并与利用理想一维剪切梁模型所绘制的应力-应变滞回圈对比,分析了动土压力对坝基土动剪切模量的影响。结果表明:由坝基底部至坝顶,加速度的放大效应基本呈线性增大;土压力在水平向的变化情况在剪应力-剪应变反演计算中不能忽略;考虑水平向动土压力的影响后,土体剪切模量的计算值减小。随着深度增加,动土压力对坝基中部土体剪切模量的影响比上部土体更大,且计算相对误差随着深度和输入地震波峰值加速度的增加而变大。  相似文献   

7.
假定土体横向受载时为弹塑性的本构关系,对墙体与土体进行共同作用分析,发现在墙体变形过程中,墙体两侧土压力是动态变化的,背侧土压力接近主动土压力,开挖侧土压力在浅层范围内接近于被动土压力,往深层向静止土压力过渡。  相似文献   

8.
黏性土的非极限主动土压力计算方法研究   总被引:1,自引:0,他引:1  
徐日庆  廖斌  吴渐  畅帅 《岩土力学》2013,34(1):148-154
经典土压力理论只能计算挡土墙位移达到极限状态时的土压力。为了更贴近工程实际,需要发展非极性土压力理论,但以往的研究仅限于砂土。对于黏性土的非极限主动土压力,在已有成果的基础上,从黏性土的应力莫尔圆出发,推导了介于初始状态和极限主动状态之间的中间状态时,黏性土的内摩擦角? 随墙体位移变化的关系公式;同时考虑了墙土接触面上外摩擦角? 和黏聚力cw的影响,根据黏性土应力莫尔圆的几何关系得到了土体黏聚力c与墙体位移的关系;最后应用水平分层法求得了非极限状态时黏性土的主动土压力计算公式。与模型试验数据的对比分析表明,理论计算值和试验实测值基本吻合。研究表明,计算方法对于计算黏性土在非极限状态时的主动土压力具有一定的理论意义,在实际工程中也具有相应的实用价值。  相似文献   

9.
经典朗肯土压力墙后土体滑裂面机制研究   总被引:2,自引:0,他引:2  
陈文胜  赵勤彦  凌同华 《岩土力学》2011,32(12):3571-3576
朗肯土压力理论至今仍是计算土压力的重要方法。由于朗肯主动土压力分布是根据墙后土体应力达到极限状态而得到的,根据极限应力状态认为墙后极限土体的滑动面为一簇平面,由此计算墙后极限土体与土压力的力学平衡不能满足。从极限平衡理论出发,针对朗肯主动土压力下墙后土体极限滑动面问题,明确提出墙后极限土体边界为滑动平面和开裂面的组合,提出的滑裂面(包含滑动面和开裂段)从力学平衡、土压力分布、土压力合力大小等方面完全符合朗肯主动土压力的理论解,可认为是朗肯主动土压力所对应的墙后土体真实滑裂面。同时对朗肯理论的墙后拉应力问题也作出了相应解释,并论证了被动土压力的墙后土体滑动面为一簇平面。研究结论对朗肯土压力理论是一个补充和完善  相似文献   

10.
在进行基坑支护设计时,现行规范采用朗肯土压力理论计算基坑支护结构土压力。这种设计计算方法是基于饱和土力学理论的,误差较大。依据非饱和土力学理论,对基坑非饱和土体主动土压力及被动土压力计算公式进行了推导。在此基础上,以实际工程为例,就基质吸力及施工季节对基坑支护结构土压力的影响进行了探讨。  相似文献   

11.
谢涛  罗强  张良  连继峰  于曰明 《岩土力学》2018,39(5):1682-1690
极限状态下墙体侧向位移对土压力计算和支挡结构设计影响显著。根据Rankine变形体和Coulomb刚塑体模型,将墙后土体变形分别当作单剪和直剪试验中试样的剪切过程,以达到极限剪切变形(剪应变或单位长度剪切位移)作为进入主被动状态标准,构建了土体变形与墙体位移的几何关系,提出了反映土体变形与强度特性,同时考虑静止时初始应力状态影响的墙体极限侧向位移近似计算模型。分析表明:土体极限剪切变形、滑移区范围、初始应力状态是影响墙体极限位移的核心要素,其中极限剪切变形占据主导作用,是导致不同颗粒组成及密实程度土体进入极限状态所需墙体位移差异显著的主要原因,而主被动区范围不同和因静止土压力系数 1引起的初始剪切变形,则是被动状态墙体位移远大于主动的关键因素;算例中主动与被动状态下墙体位移与墙高之比分别介于0.5‰~13.2‰和?0.4%~?5.2%,且主动状态下细粒土墙体位移大于粗粒土,计算结果与工程经验及相关文献模型试验基本一致。  相似文献   

12.
考虑土拱效应的挡土墙主动土压力与被动土压力统一解   总被引:1,自引:0,他引:1  
朱建明  赵琦 《岩土力学》2014,35(9):2501-2506
土拱效应对倾斜挡土墙下的主动土压力及被动土压力有重要的影响,但是相关计算理论研究略显不足。为了将土拱效应考虑到倾斜挡土墙下的土压力计算中,首先通过应力摩尔圆及静力平衡法分别给出了考虑土拱效应下主动土压力及被动土压力计算所需的两大因素:侧向土压力系数及竖向平均应力公式。在此基础上建立了考虑土拱效应的倾斜挡土墙主动土压力及被动土压力的统一表达式,并将其应用到求解土压力合力及其作用点高度的计算中。算例表明,土拱效应对于主动土压力与被动土压力的影响不同。随着墙体倾角的增大,主动土压力作用点高度逐渐降低,即土拱效应随着墙体倾角的增大而降低。与前述相反,随着墙体倾角的增大,被动土压力作用点高度逐渐降低,即土拱效应的影响随着墙体倾角的增大而增大。  相似文献   

13.
黏性土填料下考虑土拱效应的挡土墙被动土压力计算   总被引:1,自引:0,他引:1  
周晓龙  马亢  钱明  刘德稳  赵琦 《岩土力学》2014,35(Z1):245-250
为解释挡土墙后填土被动土压力的非线性分布现象,在考虑土拱形状为圆弧,滑裂面采用朗肯滑裂面的基础上,给出考虑土拱效应的被动土压力系数Kawn,进而基于应力状态法及土楔形体静力平衡两种思想求解了竖向平均应力 公式,在该基础上,给出黏性土填料下的挡土墙被动土压力分布公式、合力公式及作用点高度计算公式。通过与试验与其他方法对比,文中提出的方法得到验证。最后,研究了黏性土填料下的挡土墙被动土压力变化规律,即考虑土拱效应求得的黏性土填料的被动土压力分布呈现上小下大的指数型分布。此外,随着δ/φ(δ为墙土摩擦角,φ为内摩擦角)的增大,土拱效应逐渐增强,土压力合力点逐渐降低。  相似文献   

14.
传统土拱效应理论是基于松动区内土体应力均匀分布这一基本假定建立的,然而由于松动区内部主应力轴偏转的影响,实际情况下松动区内部的土体应力分布往往是非均匀的。针对这一情况,在太沙基松动土压力分析模型的基础上,通过假定3种不同形状的大主应力轨迹线,考虑了松动区内应力分布形式对松动土压力的影响,对传统太沙基松动土压力公式进行了修正,并与离散元数值模拟结果进行了对比验证。研究结果表明:当土体达到极限平衡状态时,松动区内部竖向应力与水平向应力分别呈上凹式分布和上凸式分布,松动区中轴线上侧向土压力系数等于被动土压力系数;采用不同形状的大主应力轨迹线进行计算所得应力分布之间的差异在10%以内,且均与离散元数值模拟结果吻合良好,从而验证了修正解的有效性。为计算方便起见,推荐相关工程中采用圆弧形大主应力轨迹线假定进行计算。  相似文献   

15.
刘忠玉  陈捷  李东阳 《岩土力学》2016,37(9):2443-2450
以墙后为无黏性填土的竖直刚性挡土墙作为研究对象,假定墙后土体中形成圆弧形土拱,考虑水平土层间的剪应力,修正了水平层分析法,从而得到平动模式下主动土压力分布、合力大小及其作用点位置的表达式。通过与模型试验结果和现有理论成果的对比分析,证明了修正方法的合理性。参数分析表明,水平土层间的平均剪应力受墙土摩擦角、填土内摩擦角等因素的影响,与主动土压力一样沿墙高为非线性分布。同时,考虑水平土层间剪应力作用得到的侧向主动土压力系数、主动土压力合力与不考虑剪应力作用的理论解答相同,但合力作用点位置高于库仑解,且低于不考虑剪应力作用的理论解答。  相似文献   

16.
蒋明镜  贺洁 《岩土力学》2015,36(10):2996-3006
简要介绍了颗粒抗转动模型,并将其引入离散元程序中,通过建立挡墙地基模型和合理选取模型参数,分别考虑了地基填土不同密实度和挡墙不同位移模式(被动T模式、RB模式、RT模式)情况下,刚性挡墙被动土压力随挡墙位移增长发展到达临界状态时,土压力系数 随位移发展的变化规律及墙后填土剪切带的形成规律,并与其他学者的研究成果进行对比分析。研究结果表明,土压力系数 随着挡墙位移增长的变化规律与填土的孔隙比(或相对密实度)和挡墙的位移模式紧密相关。随着孔隙比的减小或相对密实度的增大,土压力系数 会逐渐由位移硬化特性过渡为位移软化特性。尽管中密试样在双轴压缩试验中呈现出应变软化特性,而中密样的土压力系数 随着挡墙平动位移的增长可能呈现出位移软化特性,也可能呈现位移硬化特性。随着刚性挡墙向墙后土体推移,试样中的剪应变随之增大,并会在墙后形成应变局部化,即剪切带的出现。与室内试验剪应变云图相似,离散元较好地模拟了土压力临界状态时剪切带分布规律。同时,墙后土体表面不再是光滑的平面,而是逐渐隆起的凹凸面;随着挡墙位移增长,土体表面隆起量越来越大,直至土体破坏。  相似文献   

17.
格形地连墙与软土相互作用的离心试验研究   总被引:3,自引:1,他引:2  
周广柱  徐伟  陈宇 《岩土力学》2011,32(Z1):134-140
格形地下连续墙(GCRW)是一种常用于软土地区的基坑开挖的新型支护结构,该结构与软土的相互作用是必须深入研究的关键问题。结合背景工程,首先进行了格形地连墙模型的设计和试验方案的制定,通过离心模型试验模拟了分步开挖基坑时格形地连墙和软土的相互作用,并把测定结果与朗肯土压力进行了比较。试验结果表明,土压力基本上呈现线性变化特征,格形地连墙因基坑开挖引起的前墙内侧土压力而产生变形和位移;格形地连墙和格子内的土体作为一个整体在土压力的作用下保持平衡,受力特征与重力式支护结构相似。支护结构处于最不利状态时,主动区土压力介于朗肯静止土压力和主动土压力之间,而被动区土压力大于朗肯被动土压力,前墙没有倾覆是因为受到了隔墙拉力  相似文献   

18.
邹丹  贺怀建 《岩土力学》2014,35(Z2):245-249
桩侧极限摩阻力是砂土中单桩抗拔极限承载力的主要组成部分,作为计算桩侧极限摩阻力的关键参数--土侧压力系数K的取值合理与否直接影响到单桩抗拔极限承载力计算的准确度。首先,基于密砂和松砂中的桩在上拔破坏时桩侧土压力分别呈被动和主动状态,同时考虑桩侧摩阻力和桩身表面粗糙度的影响,分别推导了不同相对密实度砂土中的土侧压力系数。然后,利用所得到的土侧压力系数并考虑桩侧单位摩阻力发挥的临界深度,按沿桩-土界面发生圆柱状剪切破坏模式建立了砂土中单桩抗拔极限承载力的计算方法。最后,利用该方法对已有的抗拔桩试验结果进行分析和比较,结果表明计算值与实测值吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号