首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
湖北省南漳县震旦系沉积型红星磷矿矿体P_2O_5平均含量23.91%,矿石自然类型主要为角砾状磷块岩,其次为白云质磷块岩、泥质纹层状和条带状致密块状磷块岩。工业类型主要为钙(镁)质和硅钙(镁)质磷矿,其次为硅质磷矿。矿石矿物为胶状磷灰石和微晶磷灰石,经x-射线衍射物相分析,其种属为含碳氟磷灰石。嵌布粒度以细-中粒为主。脉石矿物主要为白云石、伊利石、高岭石、铁质。经测定当磷块岩磨矿粒度小于0.1mm,其磷酸盐矿物单体解离率可达92.53%,这为确定合理的选矿流程具有实际意义。  相似文献   

2.
贵州织金含稀土磷矿床稀土元素赋存状态研究   总被引:6,自引:0,他引:6  
利用等离子质谱仪ICP-MS、扫描电镜配合能谱分析、电子探针分析方法,研究了贵州织金含磷岩系剖面稀土含量变化。结果表明,剖面上稀土含量与磷灰石含量变化呈正相关关系,说明稀土主要赋存于磷灰石矿物中;利用扫描电镜、电子探针分析方法对生物碎屑、白云石和胶磷矿进行单矿物微量元素分析研究表明,胶磷矿中稀土含量最高,生物碎屑和白云石稀土含量较低,说明织金含稀土磷矿床稀土元素赋存状态是以类质同象的形式存在于胶磷矿中;利用稀土元素化学物相分析研究同样表明只有少量的稀土元素被磷块岩中粘土矿物所吸附,大量的稀土元素以类质同相形式存在于胶磷矿中。  相似文献   

3.
雪岭磷矿处于东川断隆与禄劝断坳接合部,为一浅海相沉积层状磷块岩矿床。磷矿主要赋存在下寒武统渔户村组一段,岩性为胶磷矿磷块岩、含磷白云岩、含磷泥质粉砂岩、含磷粉砂质泥岩及含磷白云质灰岩。矿石矿物主要为胶磷矿,脉石矿物主要为白云石和少量硅质、粉砂质泥质物;矿石化学成分主要为P2O5,CaO,MgO,SiO2,F,酸不溶物。矿石结构主要为不同粒级的颗粒胶结结构,构造以条带状构造为主,以及少量的块状构造。矿床成因属于早寒武世时期海侵背景下磷质随上升洋流在扬子地台沉积所致,后期的风化作用导致了磷质的进一步富集。  相似文献   

4.
原生与风化胶磷矿和白云石的表面化学特征及比较研究   总被引:1,自引:0,他引:1  
对不同磷矿样品中的白云石表面结构进行XPS分析,以揭示碳、氧、铁、氟、钙、镁等元素在它们表面结构中的存在形态及其差异,并系统研究磷块岩中白云石和胶磷矿矿物表面化学特征。实验表明:矿物表面和整体之间在化学成分、状态和结构等方面存在明显差异,矿物表面的非均匀性特征是其表面化学反应的重要因素。矿物表面的XPS分析反映出矿物表面化学特征。C元素含量变化:原生磷块岩中白云石49.59%,风化磷矿39.92%显示降低;原生磷块岩中胶磷矿24.67%;风化磷矿中33.42%~37.76%,含量表现升高。其原因是风化过程中白云石被弱酸溶解,酸解过程中产生CO_2,故白云石中的C元素降低。针对白云石和胶磷矿表面性质的差异,在风化过程中,白云石较胶磷矿更易于风化的表面及分子结构差异,其风化溶解作用是造成磷矿风化矿表面结构疏松及其P_2O_5及稀土含量增加,土壤中氟元素活化迁移和污染的重要机理。  相似文献   

5.
一、概述长期来广大岩矿工作者习惯把无一定外形、具有胶状裂纹,正低偏中突起,全消光显微晶质的磷酸盐称为胶磷矿,它是磷块岩的主要矿物成分。1912年前认为胶磷矿是一种非晶质的磷酸盐矿物。1912年劳埃采用伦琴射线研究矿物内部结构,发现胶磷矿是结晶的非均质体,内部质点排列遵循晶体所共有的空间格子规律。随着多种先进测试手段综合运用于这种结晶质磷酸盐矿物的研究中,对其认识日趋统一。目前普遍认为胶磷矿主要是由超微粒状碳氟磷灰石组成,我们研究了贵州福泉震旦纪磷质迭层石、四川峨嵋震旦纪砂屑磷块岩和安微凤台寒武纪砾屑磷块岩中的胶磷矿,得到了相同结论。  相似文献   

6.
晋宁磷矿中低品位磷块岩工艺矿物学研究刘光碧(昆明冶金研究院,昆明650031)关键词晋宁磷矿磷块岩工艺矿物学研究用的矿石取自晋宁矿区的Ⅲ、Ⅳ矿段。鉴定结果表明,两矿段矿石的矿物组成基本相同,只是相对矿物含量有所不同。矿石中的磷灰石以氟磷灰石为主,另有...  相似文献   

7.
周建平 《云南地质》2011,30(1):92-94,91
胶磷矿的矿物组成,主要是微碳—低碳磷灰石,及细晶磷灰石。而胶磷矿细微颗粒,经电镜观察鉴定,主要由磷酸盐化有机碎屑及藻席碎屑组成,早寒武世磷块岩的形成是生物学、沉积学、古地理—古构造等综合因素沉积作用的产物。  相似文献   

8.
云南省镇雄县银厂湾磷矿为隐伏矿,矿体呈层状赋存于下寒武统梅树村组( 1ms),现已控制三个矿体,矿体产状与岩层产状一致,均较为平缓。矿体矿石矿物为胶磷矿、微晶碳磷灰石和氟磷灰石。通过研究,该矿床形成于海湾潮下低能带的古地理环境,主要由富磷生物碎屑沉积聚集而成,属沉积的碳酸盐-硅质层状磷块岩矿床。  相似文献   

9.
织金新华磷矿碎屑磷灰石的矿物成分研究   总被引:1,自引:0,他引:1  
织金新华磷矿是我国扬子地台西南缘早寒武世重要的海相沉积磷矿床.长期以来,织金磷块岩磷酸盐矿物成分被认为是碳氟磷灰石或低碳氟磷灰石,有学者认为,产于沉积岩中的磷灰石基本上都属于碳氟磷灰石.本文利用电子探针的微区成分定量分析技术和x射线衍射分析技术,确认织金磷矿碎屑磷灰石为氟磷灰石.  相似文献   

10.
滇池地区沉积磷块岩中胶磷矿矿物学特征及其研究意义   总被引:1,自引:0,他引:1  
本文从物理性质、化学成分及其成因结构等方面,对云南滇池地区胶磷矿进行了矿物学特征研究。提出该区胶磷矿主要以三种形式赋存在磷块岩中。对不同矿石类型中胶磷矿做扫描电镜研究,得知胶磷矿主要由超微晶低碳氟磷灰石集合体、磷酸盐显微莓群以及纤维放射状磷灰石等构成。经化学分析、红外、晶胞参数测定,不同胶磷矿有一定差异,特别是碳和磷,经矿物学对比发现,反映随变质作用的加深,胶磷矿有向晶质氟磷灰石演化的趋势,脱碳作用表现明显。本区胶磷矿稀土元素含量不高,钇族较富,铈族较贫。球粒陨石标准化后为铈亏损型模式。  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

15.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

16.
17.
18.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

19.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

20.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号