首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estuarine systems are complex environments where seasonal and spatial variations occur in concentrations of suspended particulate matter, in primary constituents, and in organic matter content. This study investigated in the laboratory the flocculation potential of estuarine-suspended particulate matter throughout the year in order to better identify the controlling factors and their hierarchy. Kinetic experiments were performed in the lab with a “video in lab” device, based on a jar test technique, using suspended sediments sampled every 2 months over a 14-month period at three stations in the Seine estuary (France). These sampling stations are representative of (1) the upper estuary, dominated by freshwater, and (2) the middle estuary, characterized by a strong salinity gradient and the presence of an estuarine turbidity maximum. Experiments were performed at a constant low turbulent shear stress characteristic of slack water periods (i.e., a Kolmogorov microscale >1,000 μm). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l−1 while no flocculation was observed for concentrations below 0.004 g l−1. Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 μm min−1 corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size.  相似文献   

2.
The Feiran–Solaf metamorphic belt consists of low-P high-T amphibolite facies, partly migmatized gneisses, schists, amphibolites and minor calc-silicate rocks of metasedimentary origin. There are also thick concordant synkinematic sheets of diorite, tonalite and granodiorite orthogneiss and foliated granite and pegmatite dykelets. The gneissosity (or schistosity) is referred to as S1, and is almost everywhere parallel to lithological layering, S0. This parallelism is not due to transposition. The gneissosity formed during an extensional tectonic event (termed D1), before folding of S0. S1 formed by coaxial pure shear flattening strain (Z normal to S0, i.e. vertical; with X and Y both extensional and lying in S1). This strain also produced chocolate tablet boudinage of some layers and S1-concordant sills and veins. S1 has a strong stretching lineation L1 with rodding characteristics. Within-plane plastic anisotropy (lower ductility along Y compared to along X) resulted in L1-parallel extensional ductile shears and melt filled cracks. Continued shortening of these veins, and back-rotation of foliations on the shears produced intrafolial F1 folds with hinges parallel to the stretching lineation. F1 fold asymmetry variations do not support previous models involving macroscopic F1 folds or syn-gneissosity compressional tectonics. The sedimentary protoliths of the Feiran–Solaf gneisses were probably deposited in a pre-800 Ma actively extending intracratonic rift characterizing an early stage of the break-up of Rodinia.  相似文献   

3.
An algorithm for determining if any given point,P, on the surface of a sphere is located inside, outside, or along the border of an arbitrary spherical polygon,S, is described. The polygon is described by specifying coordinates of its vertices, and coordinates of some pointX which is known to lie withinS. The algorithm is based on the principle that an arc joiningX andP will cross the border ofS an odd number of times ifP lies outsideS, and an even number of times ifP lies withinS. The algorithm has been implemented as a set of FORTRAN subroutines, and a listing is provided. The algorithm and subroutine package can be used with spherical polygons containing holes, or with composited spherical polygons.  相似文献   

4.
Flocs generated by various shear forces exhibit different characteristics of size, strength and structure. These properties were investigated by employing a continuous optical monitoring and a microscope with CCD camera to directly monitor aggregation under six different shear intensities. The floc structure was characterized by the fractal dimension. The results showed that the flocculation index (FI) decreased from 1.16 at 20 rpm to 0.25 at 250 rpm and the floc size decreased from 550 μm to 150 μm, meantime, the FI value showed a good correlation with floc size. In order to determine the floc strength, two methods were used. One was the strength factor, ranging from 18.3% to 62.5%, calculated from FI curve, and the other was a theoretical value between 0.005 N/m2 and 0.240 N/m2, estimated by calculation. The floc strength increased with the G value in both cases. Furthermore, the fractal dimension increased with G and its value was between 1.30 and 1.63. The relation between fractal dimension and strength was also obtained.  相似文献   

5.
In the present study, four different heuristic techniques viz. multi-layer perceptron (MLP), radial basis function (RBF), self-organizing maps (SOM), and co-active neuro-fuzzy inference system (CANFIS) with hyperbolic tangent and sigmoid transfer functions and two regression-based techniques, i.e., multiple linear regression (MLR) and sediment-rating curve (SRC), were used for suspended sediment modeling. Gamma test (GT), correlation function (CF), M test, and trail–error procedure were applied for estimation of appropriate input variables as well as training data length. The results of the GT and CF suggested the five input variables (Qt, Qt?1, Qt?2, St?1, and St?2, where Qt?1 and St?1 indicate the discharge and sediment values of one previous day) as the best combination. The optimal training data length (75% of total data) was estimated by M test and trail–error procedure for development of the applied models. The MLP with sigmoid transfer function (M-2) performed better than the all other models. The results of sensitivity analysis indicated that the present-day discharge (Qt), 1-day lag discharge (Qt?1) and 1-day lag suspended sediment (St?1) are the most influenced parameters in modeling current day suspended sediment (St).  相似文献   

6.
Coagulation and transport of sediments in the Gironde Estuary   总被引:3,自引:0,他引:3  
The distribution of suspended particle size and concentration were measured along the Gironde Estuary, France, from the river seaward to the ocean. The suspended particle size and volume concentration were measured using in situ holography and onboard optical techniques utilizing special procedures in order to avoid floc breakage. Sediments discharged by the rivers coagulate upon encountering the very low salinities (0.2‰ of the upper estuary (confirmed with laboratory experiments), and are then transported and deposited by currents in the remainder of the estuary. This coagulation, coupled with estuarine circulation, produces a turbidity maximum which is offset between the surface and bottom waters. The floc size maximum is oceanward of the turbidity maximum and is, likewise, offset along the estuary by about 30 km. The estuary can be subdivided into the following zones: (1) coagulation; (2) hydrodynamic, landward of the null point; and (3) hydrodynamic, seaward of the null point. Initial coagulation appears to be completed in coagulation zone (1), and particles are transported and settled (with very little floc breakage and recoagulation) in zones (2) and (3) only. The floc settling velocities, coupled with estuarine circulation, control the concentration and size distributions of flocs in the water column, and eventually control the deposition of sediments.  相似文献   

7.
The Rock-Eval pyrolysis and TOC analysis have been widely used to evaluate the source rock quality. The atomic H/C ratio of kerogen, however, has been overlooked in source rock evaluation. In this study, coal and carbonaceous samples, including 26 from northwestern Taiwan, 12 from China, and 4 from the United States were analyzed, and integrated with 157 published data, to explore the significance of atomic H/C ratio as a parameter of source rock evaluation. Two different linear trends were observed in the cross-plot of S 1 versus S 2. Field outcropped shale or C-shale exhibits a steeper slope compared to that of coal samples which can be attributed to the compositional difference in their organic material. A rather strong positive correlation for H% versus S 2 illustrates the contribution of H-containing macerals, especially exinite. Organic matters in the samples studied are of type II/III kerogen based on the relationship between HI and T max. The H/C ratio, as well as the HI, S 1, and S 2, generally decreases with the maturity increasing. The H/C ratio decreases slightly from 1.1 to 0.7 with the maturity increasing from R o 0.55 to 0.85%. Samples with H/C ratio in this range show significant change in certain other geochemical parameters (e.g. HI, S 1, S 2, S 1 + S 2, S 1/(S 1 + S 2), S 1/TOC, (S 1 + S 2)/TOC, T max). The (S 1 + S 2)/TOC ratio (defined as QI) was used as an indicator of the hydrocarbon potential. The QI, HI, and H/C ratio show a certain correlation, all increasing accordingly. The QI of the samples analyzed in this study is approximately 100–380 (mgHC/gTOC), similar to that of most humic coals for oil and gas generation. Samples with R o value lower than 0.55% always show significant variation in their HI, ranging from 80 to 520 mgHC/gTOC. It is inferred that hydrocarbon potential started from R o 0.55% and atomic H/C ratio 1.1 in this study.  相似文献   

8.
There are various types of the windblown sediment traps developed for wind tunnel and field studies. One of the main supports expected from these traps is in measuring surface dust concentrations to appropriately derive flux equations. The measurement performance and accuracy of a trap is very important and depends strictly upon the physical characteristics and the behaviors of dust grains with air flows. This paper presents the measurement results of static pressure distribution (SPD) of wind flow around Vaseline-coated slide (VCS) catchers with an aim of finding out whether or not particle trapping efficiency (η) of the VCS is related to the SPD. The SPD was evaluated by a wind reduction coefficient (R c) in a series of wind tunnel experiments with different VCS settings which have different attachment configurations on a pole. Three VCS configurations were considered: a configuration on a circular plastic pole (CPP) and two configurations on wooden square poles (WSP1 and WSP2, respectively). Thus, the primary contribution of this work was to experimentally analyze the effect of the different attachment configurations on the SPD, and the secondary objective was to determine the effect of the SPD on the η. It was shown that spatial correlation and spatial pattern of the R c were different in the surrounding area of each configuration, and ANOVA and DUNCAN tests indicated that η(s) of WSP1, WSP2, and CPP were different at the significant level of P ≤ 0.05 with the mean of 0.94 ± 0.09, 0.63 ± 0.14, and 1.13 ± 0.07, respectively. Additionally, the amount of PM20, PM40, PM60, PM80, and PM100 trapped by the configurations of WSP1, WSP2, and CPP considerably varied depending upon the particular aerodynamic circumstances associated with every configuration.  相似文献   

9.
Strain analysis of the Baraitha conglomerate is attempted by direct measurements on extracted pebbles and by micrometric analysis. The overall deformation is of flattening type, with thek value lower by more than half in the matrix than in the pebbles. The viscosity contrast between pebbles and matrix (μ im) is in the ratio of 2:1 and the bulk deformation appears to be strongly controlled by Ci (concentration of pebbles expressed as percentage). The total shortening (≃35%) in the Baraitha conglomerate is comparable with the shortening accomplished in the folding of the overlying Bijawar Group volcanosedimentary sequence. The bulk strain axesX t, Yt andZ t, as determined from the analysis of the deformed conglomerate, are unsymmetrically oriented with reference to folds formed by oblique flexural-slip with neitherX t norY tcoincident with the fold hinges. The lack of transection of folds by cleavage again suggests flattening deformation. The extension in theY tdirection is greater in the matrix than in the pebbles.  相似文献   

10.
Here we present the first set of metal-silicate partitioning data for Cs, which we use to examine whether the primitive mantle depletion of Cs can be attributed to core segregation. Our experiments independently varied pressure from 5 to 15 GPa, temperature from 1900 to 2400 °C, metallic sulfur content from pure Fe to pure FeS, silicate melt polymerization, expressed as a ratio of non-bridging oxygens to tetrahedrally coordinated cations (nbo/t) from 1.26 to 3.1, and fO2 from two to four log units below the iron-wüstite buffer. The most important controls on the partitioning behavior of alkalis were the metallic sulfur content, expressed as XS, and the nbo/t of the silicate liquid. Normalization of XS to 0.5 yielded the following expressions for D-values as a function of nbo/t: log DNa = −2.0 + 0.44 × (nbo/t), log DK = −2.4 + 0.67 × ( nbo/t), and log DCs = −3.2 + 1.17 × (nbo/t). Normalization of nbo/t to 2.7 resulted in the following equations for D-values as a function of S content: log DNa = −4.1 + 6.4 × XS, log DK = −7.7 + 13.9 × XS, and log DCs = −12.1 + 23.3 × XS.There appears to be a negative pressure effect up to 15 GPa, but it should be noted that this trend was not present before normalization, and is based on only two measurements. There is a positive trend in cesium’s metal-silicate partition coefficient with increasing temperature. DCs exhibits the largest change and increased by a factor of three over 500 °C. The effect of oxygen fugacity has not been precisely determined but in general, lowering fO2 by two log units resulted in a rise in all D-values of approximately an order of magnitude. In general, the sensitivity of partition coefficients to changing parameters increased with atomic number.The highest D-value for Cs observed in this study is 0.345, which was obtained at nbo/t of 2.7 and a metal phase of pure FeS. This metallic composition has far more S than has been suggested for any credible core-forming metal. We therefore conclude that the depletion of Cs in Earth’s mantle is either caused by radically different behavior of Cs at pressures higher than 15 GPa or is not related to core formation. Even so, we have shown that a planet with a sufficient S inventory may incorporate significant amounts of alkali elements into its core.  相似文献   

11.
A distribution-free estimator of the slope of a regression line is introduced. This estimator is designated Sm and is given by the median of the set of n(n – 1)/2 slope estimators, which may be calculated by inserting pairs of points (X i, Yi)and (X j, Yj)into the slope formula S i = (Y i – Yj)/(X i – Xj),1 i < j n Once S m is determined, outliers may be detected by calculating the residuals given by Ri = Yi – SmXi where 1 i n, and chosing the median Rm. Outliers are defined as points for which |Ri – Rm| > k (median {|R i – Rm|}). If no outliers are found, the Y-intercept is given by Rm. Confidence limits on Rm and Sm can be found from the sets of Ri and Si, respectively. The distribution-free estimators are compared with the least-squares estimators now in use by utilizing published data. Differences between the least-squares and distribution-free estimates are discussed, as are the drawbacks of the distribution-free techniques.  相似文献   

12.
13.
《Chemical Geology》2006,225(3-4):222-229
First principles phase diagram calculations were performed for the system NaCl–KCl. Plane-wave pseudopotential calculations of formation energies were used as a basis for fitting cluster expansion Hamiltonians, both with and without an approximation for the excess vibrational entropy (SVIB). Including SVIB dramatically improves the agreement between calculated and experimental phase diagrams: experimentally, the consolute point is {XC = 0.348, TC = 765 K}Exp; without SVIB, it is {XC = 0.46, TC  1630 K}Calc; with SVIB, it is {XC = 0.43, TC  930 K}Calc.  相似文献   

14.
Additions of the low occurrence stable isotopes 61Ni, 65Cu, and 68Zn were used as tracers to determine the exchange kinetics of metals between dissolved and particulate forms in laboratory studies of natural water and suspended sediments from South San Francisco Bay, CA. Dissolved metal isotope additions were made so that the isotope ratios (rather than total metal partitioning) were significantly altered from initial ambient conditions. Dissolved metal concentrations were determined using an organic ligand sequential extraction technique followed by analysis with high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Exchangeable particulate concentrations were extracted using a 20% acetic acid leach followed by determination using HR-ICPMS. Equilibrium and kinetic sorption parameters were quantified according to a general model for trace metal partitioning assuming pseudo-first-order kinetics. Partition coefficients (KD) were tracked as a function of time over the fortnight experiment. For Ni, Cu, and Zn the initial ambient KD values were found to be 103.65, 103.88, and 104.52 L kg−1, respectively. As a result of the dissolved metal isotope additions, the partition coefficients for all three metals dropped and then increased back to near ambient KD values after 14 days. Curve-fitting concentration versus time profiles from both dissolved and exchangeable particulate data sets allowed determination of kinetic rate constants. The best estimates of forward and backward kinetic rate constants for Ni, Cu, and Zn respectively are k′f = 0.03, 0.07, 0.12 d−1 and kb = 0.13, 0.12, 0.15 d−1. These results predict that sorption equilibria in South Bay should be reached on the order of a month for Ni, on the order of 3 weeks for Cu, and on the order of 2 weeks for Zn. Together, the dissolved and exchangeable particulate data indicate more sluggish sorption kinetics for Ni than for Cu and Zn and suggest that different chemical forms control the speciation of these three metals in South Bay. Order of magnitude metal sorption exchange rates were estimated using these kinetic results. These calculations indicate that sorption exchange between dissolved and suspended particulate phases can cause dynamic internal cycling of these metals in South San Francisco Bay.  相似文献   

15.
16.
We have performed experiments to constrain the effect of sulfur fugacity (fS2) and sulfide saturation on the fractionation and partitioning behavior of Pt, Pd and Au in a silicate melt–sulfide crystal/melt–oxide–supercritical aqueous fluid phase–Pt–Pd–Au system. Experiments were performed at 800 °C, 150 MPa, with oxygen fugacity (fO2) fixed at approximately the nickel–nickel oxide buffer (NNO). Sulfur fugacity in the experiments was varied five orders of magnitude from approximately log fS2 = 0 to log fS2 = −5 by using two different sulfide phase assemblages. Assemblage one consisted initially of chalcopyrite plus pyrrhotite and assemblage two was loaded with chalcopyrite plus bornite. At run conditions pyrrhotite transformed compositionally to monosulfide solid solution (mss), chalcopyrite to intermediate solid solution (iss), and in assemblage two chalcopyrite and bornite formed a sulfide melt. Run-product silicate glass (i.e., quenched silicate melt) and crystalline materials were analyzed by using both electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. The measured concentrations of Pt, Pd and Au in quenched silicate melt in runs with log fS2 values ranging from approximately 0.0 to −5.0 do not exhibit any apparent dependence on fS2. The measured Pt, Pd and Au concentrations in mss do vary as a function of fS2. The measured Pt, Pd and Au concentrations in iss do not appear dependent on fS2. The data suggest that fS2, working in concert with fO2, via the determinant role that these variables play in controlling the magmatic sulfide phase assemblage and the solubility of Pt, Pd and Au as lattice bound components in magmatic sulfide phases, is a controlling factor on the budgets of Pt, Pd and Au during the evolution of magmatic systems.  相似文献   

17.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

18.
Calculated phase equilibria involving minerals and H2O–CO2–NaCl fluid lead to predictions of how infiltration of rock by H2O–NaCl fluids with X NaCl in the range 0–0.3 (0–58 wt% NaCl) drives the reactions calcite + quartz = wollastonite + CO2 and dolomite = periclase + calcite + CO2. Calculations focus on metamorphism in four aureoles that together are representative of the normal PT conditions and processes of infiltration-driven contact metamorphic reactions. The effect of salinity on the spatial extent of oxygen isotope alteration was also computed. The time-integrated input fluid flux (q°) that displaces the mineral reaction front an increment of distance along the flow path always increases with increasing X NaCl. For input fluids with salinity up to approximately five times that of seawater (X NaCl ≤ 0.05), values of q° required to explain the spatial extent of decarbonation reaction are no more than 1.1–1.5 times that computed assuming the input fluid was pure H2O. For more saline fluids, values of q° may be up to 1.4–7.9 times that for pure H2O. Except for reaction in the presence of halite and vapor (V), infiltration of H2O–NaCl fluids expands the region of oxygen isotope alteration relative to the size of the region of mineral reaction. The expansion is significant only for saline fluids with X NaCl ≥ ~0.1. Immiscible fluid phase separation and differential loss of the liquid (L) or V phase from the mineral reaction site increases the amount of reactive fluid required to advance the mineral reaction front compared to conditions under which equilibration of minerals and fluid is attained with no loss of L or V. Decarbonation reactions driven by infiltration of fluids with even modest seawater-like salinity can explain the occurrence of salt-saturated fluid and solid halide inclusions in contact metamorphosed carbonate rocks.  相似文献   

19.
Polymetamorphic garnet micaschists from the Austroalpine Saualpe Eclogite Unit (Kärnten, Austria, Eastern Alps) display complex microstructural and mineral–chemical relationships. Automated scanning electron microscopy routines with energy dispersive X‐ray (EDX) spectral mapping were applied for monazite detection and garnet mineral–chemical characterization. When the Fe, Mg, Mn and Ca element wt% compositions are used as generic labels for garnet EDX spectra, complex zonations and porphyroblast generations can be resolved in complete thin sections for selective electron‐microprobe analyses. Two garnet porphyroblast generations and diverse monazite age populations have been revealed in low‐Ca and high‐Al‐metapelites. Garnet 1 has decreasing Mn, constant Ca and significantly increasing Mg from cores to rims. Geothermobarometry of garnet 1 assemblages signals a crystallization along a M1 prograde metamorphism at ~650 °C/6–8 kbar. Sporadic monazite 1 crystallization started at c. 320 Ma. Subsequent pervasive 300–250 Ma high‐Y and high‐Gd monazite 1 formation during decompression coincided with the intrusion of Permian and Early Triassic pegmatites. Monazite 1 crystallized along the margin of garnet 1. Coronas of apatite and allanite around the large 320–250 Ma monazite signal a retrogressive stage. These microstructures suggest a Carboniferous‐to‐Early‐Permian age for the prograde M1 event with garnet 1. Such a M1 event at an intermediate‐P/T gradient has not yet been described from the Saualpe, and preceded a Permo‐Triassic low‐P stage. The M2 event with garnet 2 postdates the corona formation around Permian monazite. Garnet 2 displays first increasing XCa at decreasing XMg, then increasing XCa and XMg, and finally decreasing XCa with increasing XMg, always at high Ca and Mg, and low Mn. This records a P–T evolution which passed through eclogite facies conditions and reached maximum temperatures at ~750 °C/14 kbar during decompression‐heating. A monazite 2 population (94–86 Ma) with lower Y and Gd contents crystallized at decreasing pressure during the Cretaceous (Eo‐Alpine) metamorphism M2 at a high‐P/T gradient. The Saualpe Eclogite Unit underwent two distinct clockwise metamorphic cycles at different P–T conditions, related to continental collisions under different thermal regimes. This led to a characteristic distribution pattern of monazite ages in this unit which is different from other Austroalpine basement areas.  相似文献   

20.
This work describes a laboratory study concerning the adsorption of isopropylxanthate ions onto modified zeolites particles. The separation of the loaded carrier and their removal, from aqueous solutions, was conducted by flocculation followed by dissolved air flotation, DAF. The zeolite employed was a natural sample (approximately 48% clinoptilolite and 30% mordenite) which was previously treated with sodium ions (activation) and modified with copper ions (Cu–Z) before the xanthate ions uptake. Adsorption capacities (qm) for Cu–Z were 0.34 meq g− 1 for the powdered form, and 1.12 meq g− 1 for the floc form. The adsorption capacity for the floc form appears to involve an enhanced electrostatic adsorption due to the positive sites on the floc surface. In all cases, the isopropylxanthate concentration in the treated water was found to be negligible (< 0.04 mg L− 1). The flotation technique showed to be a fast process, requires a low recycle ratio (20%) in air saturated water, and the treated water ended up with a very low residual turbidity (6.8 NTU). It is believed that this adsorption–flotation technique, here named adsorptive particulate flotation, using activated and modified natural zeolite has a high potential as an alternative for pollutants removal (copper and isopropylxanthate ions) from waste mining effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号