首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
通过比较各种MOS方法在短期风速风向预报中的优劣,建立了一种基于动力统计预报模型和数值预报结果进行优化集合的动态MOS预报方法。在2005—2007年8月份风速的后报检验中,集合MOS预报可以将数值模式MM5的风速预报绝对平均误差减少30%以上。对风向预报的准确性也有明显的改进。从2008年8月10日至21日奥帆赛期间浮标A、B、C和D的检验结果来看,观测风速不大于6m.s-1的情况下,MOS平均绝对误差仅为1.1m.s-1,比MM5相应的预报误差(1.45m.s-1)减小24%。值得指出的是MM5对8月17至18日和21日的大尺度大风天气过程预报相对准确,而统计模型对这三天的风速快速加速过程反应迟缓。MOS的风向预报与MM5没有本质上的差别。两者的平均绝对误差总的来说相差小于10°,对预报员的风向预报决策影响没有明显的区别。  相似文献   

2.
根据短期天气预报质量检验办法,对2014年12月—2015年2月T639、EC细网格、MM5、逐3h的WRF-RUC、WRF确定性预报(EnWRF)及不同集合百分位、上海区域模式(BCSH)、T639-MOS在山东省陆地120站和沿海12个精细海区的日最大风速、最高最低气温预报,以及济南和青岛的逐6h内最大风速和6h内最高最低气温预报进行检验,分析了不同数值模式产品的预报能力。  相似文献   

3.
6种数值模式在安徽区域天气预报中的检验   总被引:4,自引:2,他引:2  
周昆  郝元甲  姚晨  邱学兴 《气象科学》2010,30(6):801-805
本文检验了从2006年6月到2008年12月,Grapes、MM5、WRF、T213、JMA和Germany共6个模式对安徽区域72 h内降水量、风速和气温的预报。降水量TS评分显示,从小雨到大雨,JMA的参考价值较高,从大雨到大暴雨则是MM5和WRF比较好;Germany和T213的评分均处于中间水平,而Grapes评分最低。冬夏季各模式的预报较好,其他季节预报较差。风速,24 h JMA和T213的预报较好,48、72 h MM5和WRF的参考价值较高。气温,24、48 h MM5和WRF预报较好,而72 h则是MM5和T213好。Grapes对风速和气温的预报相对较差。上述检验结果不仅有助于预报员更好地利用数值模式制作天气预报,而且为数值天气预报的解释应用提供科学依据。  相似文献   

4.
风的精细化MOS预报方法研究   总被引:11,自引:5,他引:11  
利用MM5模式的站点输出产品,采用多元线性和逐步回归的MOS统计方法,预报宁夏25个测站48 h逐时风速、风向,通过对2004年6月~2005年4月近一年的预报效果检验,结果表明:该方法对逐时风速有较强的预报能力,对逐时风向有一定的预报能力,但尚未达到可用程度,还有待于进一步的改进,但都较原MM5模式预报水平有了显著的提高。  相似文献   

5.
2003年江淮汛期多模式短期集合预报方法研究   总被引:8,自引:3,他引:5  
利用AREM、MM5和WRF模式为试验模式,由对短期天气预报结果影响颇大的积云参数化方案和边界层方案构成15个集合预报成员,开展有限区域多模式短期集合预报在我国汛期时段的应用与研究.分别研究了单个模式集合预报和多模式集合预报在2003年汛期(7月)预报中的应用,预报对象主要包括降水、500 hPa位势高度和700 hPa相对湿度.试验结果表明:(1) 由AREM、MM5和WRF模式构成的多模式集合对以上要素的集合预报总体效果比其任一单个模式的集合预报效果好;(2) 对于降水的集合预报,单个模式的集合平均结果对多模式集合预报效果有影响.且对于不同的降水临界值影响不同;当降水临界值较小时,单模式集合平均结果对多模式集合效果影响较小;当降水临界值较大时,影响较大,甚至可以影响多模式集合的集合平均预报成败;(3) 对于降水、500 hPa位势高度和700 hPa相对湿度,其单个模式以及多模式的48 h集合预报对确定性预报的改善度都比24 h的显著.(4) 对于形势预报和相对湿度预报,多模式集合预报效果明显比同期T213模式的预报水平高.  相似文献   

6.
根据短期天气预报质量检验办法,对2015年3月—2015年5月T639,EC细网格、WRF-RUC,WRF确定性预报(En WRF)及不同集合百分位、上海区域模式(BCSH)以及T639-MOS在山东省陆地120站和沿海12个精细海区的降水、日最大风速以及日最高最低气温预报进行检验,分析了不同数值模式产品的预报能力。  相似文献   

7.
介绍了基于MM5模式的预报气象要素的一种MOS方法 ,并对预报效果做了初步检验。MOS方法直接利用MM5模式的预报产品 ,采用多点滑动平均普查因子方法和多元线性 (非线性 )逐步回归方法 ,可以同时预报多地点、多时次、多个气象要素。其中采用的多点滑动平均普查因子方法 ,减弱甚至消除了由于随机原因造成其中单点相关因子的不稳定性  相似文献   

8.
根据短期天气预报质量检验办法,对2015年12月—2016年2月T639、EC细网格、WRF确定性预报(EnWRF)12km和4km分辨率、WRF集合不同分位数、上海区域模式(BCSH)以及中国气象局下发的指导预报T639-MOS在山东省陆地120站和沿海12个精细海区日最大风速和日最高最低气温预报进行检验,分析了不同数值模式产品的预报能力。  相似文献   

9.
根据短期天气预报质量检验办法,以及气象行业标准《风预报检验方法》(QX/T229—2014),对2016年6—8月T639、EC细网格、山东WRF确定性预报(EnWRF)、WRF不同集合分位数、上海区域模式(BCSH)以及T639-MOS在山东省陆地120站和沿海12个精细海区的降水、日最大风速以及日最高最低气温预报进行检验,分析了不同数值模式产品的预报能力。  相似文献   

10.
根据短期天气预报质量检验办法,以及气象行业标准《风预报检验方法》(QX/T229-2014),对2016年9—11月T639、EC细网格、山东WRF确定性预报12km和4km分辨率、WRF集合不同分位数、上海区域模式(BCSH)以及T639-MOS解释应用产品在山东省陆地120个国家级气象观测站和沿海12个精细海区的降水、日最大风速以及日最高最低气温预报进行检验,分析了不同数值模式产品的预报能力。  相似文献   

11.
龚强 《辽宁气象》2003,(2):14-15,30
介绍了基于MM5模式的预报气象要素的一种MOS方法,并对预报效果做了初步检验。MOS方法直接利用MM5模式的预报产品,采用多点滑动平均普查因子方法和多元线性(非线性)逐步回归方法。可以同时预报多地点、多时次、多个气象要素。其中采用的多点滑动平均普查因子方法,减弱甚至消除了由于随机原因造成其中单点相关因子的不稳定性。  相似文献   

12.
为客观评价不同的数值模式对山东沿海风的预报性能,结合中国气象局降水分级预报评分办法,定义了一种风力预报分级检验办法.对MM5、WRF-RUC和T639模式在山东沿海9个精细化海区代表站的日最大风速预报进行了检验,结果发现:各模式普遍存在对于小风天气预报偏大、大风天气预报偏小的特点.T639模式风力预报偏弱,因此,对于4级以下的风预报评分较高,而对于8级以上大风几乎没有预报能力.MM5和WRF-RUC模式对于4级以上的较强风力的预报结果明显好于T639模式,其中WRF-RUC模式预报准确率稍高于MM5模式,但风力越大,各模式均漏报越多.各模式分析场以及24 h风力预报与实况的一致性检验表明:5级以下的风力,MM5和WRF模式预报风力与实况基本为一致,但对于6级以上的大风,MM5模式预报较分散,WRF模式预报更接近实况风力.综合各模式对于风力预报的平均绝对误差,WRF-RUC模式预报误差最小,具有较高的参考价值.MM5模式预报准确率稍低于WRF-RUC模式,且存在一定的不稳定性.  相似文献   

13.
为了了解各种数值模式要素预报在2012年6月第三届亚沙会(亚洲沙滩运动会)比赛期间表现如何,对2011年4—6月MM5,WRF—RUC和T639模式亚沙会比赛场地的海阳气象观测站24h降水量、10m日最大风速以及2m日最高最低温度预报进行了检验,检验还包括了t70nline(天气在线)2m日最高最低温度预报,结果表明:(1)各模式晴雨预报基本都在70分左右。WRF-RUC模式一般性降水和小雨预报效果最好。对于中雨,各模式空、漏报均较多。大雨以上量级降水,各模式均有一定的预报能力。WRF—RUC和T639模式均较好地预报出大雨和暴雨过程,MM5略差,但各模式均空报大暴雨过程。(2)4级以下的弱风T639模式预报准确率最高,MM5和WRF-RUC模式空报较多;对于4级以上风,MM5和WRY-RUC模式预报效果较好,T639模式漏报较多。结合最大风速预报误差看,MM5和WRF-RUC模式相差不多,预报效果最好,T639模式预报误差最大。(3)WRF。RUC模式最高温度预报准确率最高,t70nline最低温度预报准确率最高。各模式最高最低温度平均误差均为负值,即模式预报比实况均偏低。  相似文献   

14.
陈圣劼  刘梅  张涵斌  俞剑蔚  陈超辉 《气象》2019,45(7):893-907
利用2011—2015年6—8月TIGGE(THORPEX Interactive Grand Global Ensemble)数据集中欧洲中期天气预报中心(ECMWF,以下简称EC)的集合降水预报数据和江苏省70个基本站逐日24 h(20时至次日20时)降水数据,通过大量暴雨样本系统检验和评估了EC集合预报及多种后处理释用产品对江苏暴雨的预报能力。结果表明:作为集合预报的初级产品,集合平均对暴雨的预报存在明显的漏报率,TS预报评分尚不及EC确定性预报;集合预报不同成员间对暴雨的预报技巧差异大,其最优成员组合的预报能力显著优于EC确定性预报,表明集合预报具有较大的应用潜力;在多种集合预报后处理释用技术中,最大值、最优百分位、降水偏差订正频率匹配法、概率预报、集合异常预报法和杜-周排序法(最大值法)的平均TS评分均较高,超过10%,其次90%分位数、融合、融合-概率匹配和杜-周排序法(集合平均或中位值法)的预报效果也均优于EC确定性预报。集合中位值、概率匹配方法对江苏暴雨的预报评分低于集合平均预报,在暴雨预报上的参考价值相对较低。该评估结果进一步加深了对各集合预报产品区域暴雨预报能力的认识,为预报员更直接快速地选取有效的集合预报产品提供参考。  相似文献   

15.
根据短期天气预报质量检验办法,对2015年6—8月T639、EC细网格、WRF确定性预报(EnWRF)12km和4km分辨率及不同集合百分位、上海区域模式(BCSH)以及T639-MOS在山东省陆地120站和沿海12个精细海区的降水、日最大风速以及日最高最低气温预报进行检验,分析了不同数值模式产品的预报能力。  相似文献   

16.
根据短期天气预报质量检验办法,以及气象行业标准《风预报检验方法》(QX/T229-2014),对2016年3—5月T639、EC细网格、WRF确定性预报(EnWRF)12km、4km分辨率及不同集合分位数、上海区域模式(BCSH)以及T639-MOS在山东省陆地120站和沿海12个精细海区的降水、日最大风速以及日最高最低气温预报进行检验,分析了不同数值模式产品的预报能力。  相似文献   

17.
WRF和MM5对2008年6—9月温度数值预报结果的对比分析   总被引:2,自引:0,他引:2  
使用WRF模式和MM5模式分别对吉林省50个地面观测站做了温度预报的数值模拟,并进行了检验分析和对比。结果表明:0-24h定时预报的预报准确率,WRF模式高于MM5模式5%~20%;24-48h定时预报的预报准确率,WRF模式高于MM5模式的6%~20%;0-24h最高和最低温度预报准确率,WRF模式分别高于MM5模式12.8%和10.9%;24-48h最高和最低温度预报准确率,WRF模式分别高于MM5模式11%和26.8%。表明WRF模式的温度预报性能优于MM5模式。  相似文献   

18.
该文尝试用中尺度气象模式WRF、边界层地形订正方法对预报结果进行资料同化,结合风机功率历史数据进行风速预报,并输出风机未来24 h内逐15 min的风功率预报结果。分析对比三步预报方法的风速预报结果和风功率预报结果,检验相关性系数、平均绝对误差和均方根误差后,得出结论进行离群值修正后的预报结果满足超短期4h和短期预测月均方根误差要求,可以投入业务运行,下一步实验可以加入各种数学模型进行再订正,风功率预报结果会进一步提升。  相似文献   

19.
2008年第29届奥运会帆船赛(奥帆赛)在青岛市浮山湾至石老人湾附近的海域举行。8月份正是青岛的汛期,天气复杂多变,而且赛区周边地形复杂。奥帆赛需要提供50km2海域内4个浮标站逐时风向、风速的定量预报。为此,开发、引进了以MM5、WRF等多种模式建立了海面风精细化预报系统(图2),并在多种模式的基础上形成一套适应奥帆赛赛区复杂天气、复杂地形特征的集成预报产品。实践表明,集成预报产品为预报员提供了良好的技术支撑,在奥帆赛期间风速预报平均绝对误差仅为1.2m.s-1、风向预报平均绝对误差仅为36°。  相似文献   

20.
支持向量机非线性回归方法的气象要素预报   总被引:2,自引:1,他引:1       下载免费PDF全文
该文介绍了基于基本的支持向量机非线性回归方法,该方法具有解决非线性问题的能力,在数值预报解释应用技术中,对某些预报量与预报因子之间相关性不显著的要素,如风、比湿等,采用支持向量机非线性回归技术较多元回归的MOS方法更具优势;利用北京市气象局中尺度业务模式 (MM5V3) 的12:00(世界时) 起始数值预报产品和观测资料,制作北京15个奥运场馆站点6~48 h逐3 h的气象要素释用产品。对比MM5V3模式,从均方根误差的平均减小率来看,2 m温度减小12.1%,10 m风u分量减小43.3%,10 m风v分量减小53.4%,2 m比湿减小38.2%。与同期的MOS方法预报结果相比,整体预报效果SVM略优于MOS。由此可见,支持向量机非线性回归方法解决与预报因子之间非线性相关的气象要素较好,具有较高的预报优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号