首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of clouds and cloud chemistry on tropospheric ozone chemistry is tested out in a two-dimensional channel model covering a latitudinal band from 30 to 60° N. Three different methods describing how clouds affect gaseous species are applied, and the results are compared. The three methods are:
  • ?A first order parameterization scheme for the removal of sulphur and other soluble gases by liquid droplets.
  • ?A parameterization scheme for SO2, O3, and H2O2 removal is constructed. The scheme is based on the solubility of gases in liquid droplets, cycling times of air masses between clouds and cloud free areas and on the chemical interaction of SO2 with H2O2 and O3 in the liquid phase.
  • ?Gas-aqueous-phase interactions and aqueous-phase chemical reactions are included in the reaction scheme for a number of components in areas where clouds are present.
  • In all three methods, a full gas-phase chemistry scheme is used. Particular emphasis is given to the study of how the ozone and hydrogen peroxide levels are affected. Significant changes in the distributions are found when aqueous-phase chemical reactions are included. The result is loss of ozone in the aqueous phase, with pronounced reductions in ozone levels in the middle and lower troposphere. Ozone levels are reduced by 10 to 30% with the largest reductions in the remote middle troposphere, bringing the values in better agreement with observations. Changes in H2O2 are harder to predict. Although, in one case study, hydrogen peroxide is produced within the aqueous phase, concentrations are mostly comparable or even lower than in the other cases. Hydrogen peroxide levels are, however, shown to be very pH sensitive. pH values around 5 seem to favour high H2O2 levels. High H2O2 concentrations may be found particularly in the upper part of the clouds under favourable conditions.  相似文献   

    2.
    A numerical experiment has been conducted on the OH-initiated tropospheric oxidation of DMS. This involved the selection of a set of reactions describing the OH-initiated oxidation kinetics and the conversion of the present level of uncertainty of the system into uncertainty ranges and distributions for the relevant system parameters (kinetic constants and initial concentrations). Uncertainties have been propagated through the model onto the output variables of interest. This has allowed (a) the uncertainty in model prediction to be quantified and compared with observations (uncertainty analysis) and (b) the relative importance of each input parameter in determining the output uncertainty to be quantified (sensitivity analysis). Output considered were the ratio of MSA/(SO2 + H2SO4) concentration at a given time, the ratio SO2/H2SO4, the total peroxynitrate species concentrations and the relative fraction of SO2 and H2SO4 formed through the various pathways. Conditional upon the model and data assumptions underlying the experiment, the following main conclusions were drawn:
    1. The possibility of direct formation of SO3 without SO2 as intermediate as suggested by Bandyet al. (1992) and Yinet al. (1990), involving direct thermal decomposition of CH3SO3 · does not seem to play a major role in the overall generation of sulphate. This is relevant to the issue of gas to particle conversion over remote areas.
    2. Reaction of CH3SOO · intermediate may be the most important pathway to the formation of SO2.
    3. The dominating peroxynitrate is CH3S(O)2O2NO2.
    Through sensitivity analysis the kinetic constants have been identified which — because of their uncertainty and of their impact on the output — mostly contribute to the output uncertainty.  相似文献   

    3.
    Two aspects of convection over oceans are discussed and the following conclusions are derived from theoretical considerations.
    1. The air layer over the sea will usually convect even when the water surface is ten degrees or more colder than the initial air temperature.
    2. An inversion at stratus cloud tops is created by the stratus, and is not a necessary preexisting condition. Such inversions persist after subsidence evaporates the cloud.
    3. Radiation heat exchange does not play an essential role in stratus formation or maintenance, and can either heat or cool the cloud.
    4. Dry air convection does not erode inversions at the top of the convecting layer. Examples of soundings are discussed.
    5. Fogs are most likely to form at sea where the water is coolest, and need no radiation effects to initiate cooling, or a boost from patches of warmer water, to begin convection.
    6. Both stratus cloud growth, and the evaporation of clouds by cloud top entrainment, readjust the vertical structure of the air to leave a constant wet-bulb potential temperature with height.
    These conclusions are supported by, firstly, a convective model which has been developed and which shows that vapor-driven convection over the ocean will proceed with zero or negative heat fluxes, at rates which saturate the lowest layer of the atmosphere in a few hours to altitudes of many tens of meters. Secondly, the availability of condensed moisture at the top of the surface layer cools the warmer entrained overlying dry air parcels so that when they descend they are no warmer than the sea surface temperature, and this induces downward moving plumes. This occurs if the wet-bulb potential temperature of the overlying air is less than the sea surface temperature, even if it is ten degrees C, or more, warmer in actual temperature.  相似文献   

    4.
    Aircraft observations of oxides of nitrogen (NO y ), measured with a ferrous sulfate converter, over the sea surrounding the Japanese islands (30–43° N, 131–141° E) were carried out in the winter of 1983 and 1984 at altitudes mostly between 3 and 8 km. NO y defined here is the sum of NO, NO2, and other unstable oxides of nitrogen that are converted to NO by ferrous sulfate. The main observations were:
    1. Over the Pacific Ocean between the latitudes of 30–35° N, the observed NO y mixing ratio between 3 and 8 km was a fairly constant 200 pptv. The NO mixing ratio increased with altitude from 15 pptv at 3 km to 35 pptv at 7 km.
    2. Over the Sea of Japan, tropospheric NO y mesured between 1 and 6 km started increasing with latitude North of 35° N and reached about 1000 pptv at 40° N.
    3. NO y was measured in an air mass transported from the stratosphere near a tropopause fold region. When the ozone mixing ratio was between 80 and 140 ppbv, the NO y mixing ratio was about 200 pptv.
      相似文献   

    5.
    The temporal variation in concentrations of major water soluble ionic species has been studied from several rain events occurred over Gadanki (13.5 °N, 79.2 °E), located in tropical semi arid region in southern India. The contribution from rain-out (in cloud) and wash-out (below cloud) processes to the total removal of ionic species by rain events is also estimated using the pattern of variations of ionic species within an individual event. A number of rain samples were collected from each rain event during June–November in 2006, 2007 and 2008. On average, nearly 20% of the total NH 4 + and non-sea SO 4 2? is removed by in-cloud scavenging, suggesting that their removal by “below cloud” washout is relatively dominant. In contrast Na+, Ca2+, Mg2+, NO 3 ? and sea-SO 4 2? are mainly removed by below-cloud scavenging or wash-out process. A significant variation in the acidity was observed within rain events with successive precipitation showing higher acidity at the final stage of the precipitation due to partial neutralization of non-sea SO 4 2? . Overall, greater influence of both terrestrial and anthropogenic sources is recorded in the rain events compared to that from marine sources.  相似文献   

    6.
    Atmospheric boundary layer research at Cabauw   总被引:1,自引:1,他引:0  
    At Cabauw, The Netherlands, a 213 m high mast specifically built for meteorological research has been operational since 1973. Its site, construction, instrumentation and observation programs are reviewed. Regarding analysis of the boundary layer at Cabauw, the following subjects are discussed:
  • - terrain roughness;
  • - Monin-Obukhov theory in practice;
  • - the structure of stable boundary layers;
  • - observed evolution of fog layers;
  • - inversion rise and early morning entrainment;
  • - use of the geostrophic wind as a predictor for wind profiles;
  • - height variation of wind climate statistics;
  • - air pollution applications: long range transport and short range dispersion;
  • - dependence of sound wave propagation on boundary-layer structure;
  • - testing of weather and climate models.
  •   相似文献   

    7.
    A modified infrared CO2 gas analyzer, a small thermocouple assembly, a heated-thermocouple anemometer for horizontal wind, and a propeller-type vertical wind sensor were used to measure the eddy fluxes of heat and CO2 above a corn crop. Experimental results of these fluxes are discussed. The main sources of errors of the eddy fluxes using these instruments were estimated:
    1. Sensors with a time constant of 0.5 s appear to be fast enough to detect most of the vertical CO2 transfer as long as the sensors are located at least one meter above the crop surface.
    2. The deviation from steady-state conditions for 10-min periods was found to have a significant effect on the eddy flux estimates.
    3. Temperature fluctuations of the air sample passing through the CO2 infrared gas analyzer were found to be non-negligible but could be easily corrected.
    4. A 1° misalignment of the vertical anemometer affected these eddy fluxes by less than 10% under all circumstances studied.
      相似文献   

    8.
    Important findings on the consequences of climate change for agriculture and forestry from the recently completed Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) are reviewed, with emphasis on new knowledge that emerged since the Second Assessment Report (SAR). The State-Pressure-Response-Adaptation model is used to organize the review. The major findings are:
    • Constant or declining food prices are expected for at least the next 25 yr, although food security problems will persist in many developing countries as those countries deal with population increases, political crisis, poor resource endowments, and steady environmental degradation. Most economic model projections suggest that low relative food prices will extend beyond the next 25 yr, although our confidence in these projections erodes farther out into the 21st century.
    • Although deforestation rates may have decreased since the early 1990s, degradation with a loss of forest productivity and biomass has occurred at large spatial scales as a result of fragmentation, non-sustainable practices and infrastructure development.
    • According to United Nations estimates, approximately 23% of all forest and agricultural lands were classified as degraded over the period since World War II.
    • At a worldwide scale, global change pressures (climate change, land-use practices and changes in atmospheric chemistry) are increasingly affecting the supply of goods and services from forests.
    • The most realistic experiments to date – free air experiments in an irrigated environment – indicate that C3 agricultural crops in particular respond favorably to gradually increasing atmospheric CO2 concentrations (e.g., wheat yield increases by an average of 28%), although extrapolation of experimental results to real world production where several factors (e.g., nutrients, temperature, precipitation, and others) are likely to be limiting at one time or another remains problematic. Moreover, little is known of crop response to elevated CO2 in the tropics, as most of the research has been conducted in the mid-latitudes.
    • Research suggests that for some crops, for example rice, CO2 benefits may decline quickly as temperatures warm beyond optimum photosynthetic levels. However, crop plant growth may benefit relatively more from CO2 enrichment in drought conditions than in wet conditions.
    • The unambiguous separation of the relative influences of elevated ambient CO2 levels, climate change responses, and direct human influences (such as present and historical land-use change) on trees at the global and regional scales is still problematic. In some regions such as the temperate and boreal forests, climate change impacts, direct human interventions (including nitrogen-bearing pollution), and the legacy of past human activities (land-use change) appear to be more significant than CO2 fertilization effects. This subject is, however an area of continuing scientific debate, although there does appear to be consensus that any CO2 fertilization effect will saturate (disappear) in the coming century.
    • Modeling studies suggest that any warming above current temperatures will diminish crop yields in the tropics while up to 2–3 °C of warming in the mid-latitudes may be tolerated by crops, especially if accompanied by increasing precipitation. The preponderance of developing countries lies in or near the tropics; this finding does not bode well for food production in those countries.
    • Where direct human pressures do not mask them, there is increasing evidence of the impacts of climate change on forests associated with changes in natural disturbance regimes, growing season length, and local climatic extremes.
    • Recent advances in modeling of vegetation response suggest that transient effects associated with dynamically responding ecosystems to climate change will increasingly dominate over the next century and that during these changes the global forest resource is likely to be adversely affected.
    • The ability of livestock producers to adapt their herds to the physiological stress of climate change appears encouraging due to a variety of techniques for dealing with climate stress, but this issue is not well constrained, in part because of the general lack of experimentation and simulations of livestock adaptation to climate change.
    • Crop and livestock farmers who have sufficient access to capital and technologies should be able to adapt their farming systems to climate change. Substantial changes in their mix of crops and livestock production may be necessary, however, as considerable costs could be involved in this process because investments in learning and gaining experience with different crops or irrigation.
    • Impacts of climate change on agriculture after adaptation are estimated to result in small percentage changes in overall global income. Nations with large resource endowments (i.e., developed countries) will fare better in adapting to climate change than those with poor resource endowments (i.e., developing countries and countries in transition, especially in the tropics and subtropics) which will fare worse. This, in turn, could worsen income disparities between developed and developing countries.
    • Although local forest ecosystems will be highly affected, with potentially significant local economic impacts, it is believed that, at regional and global scales, the global supply of timber and non-wood goods and services will adapt through changes in the global market place. However, there will be regional shifts in market share associated with changes in forest productivity with climate change: in contrast to the findings of the SAR, recent studies suggest that the changes will favor producers in developing countries, possibly at the expense of temperate and boreal suppliers.
    • Global agricultural vulnerability is assessed by the anticipated effects of climate change on food prices. Based on the accumulated evidence of modeling studies, a global temperature rise of greater than 2.5 °C is likely to reverse the trend of falling real food prices. This would greatly stress food security in many developing countries.
      相似文献   

    9.
    Near real-time measurements of PM2.5 ionic compositions were performed at the summit of the highest mountain in the central-eastern plains in the spring and summer of 2007 in order to characterize aerosol composition and its interaction with clouds. The average concentrations of total water soluble ions were 27.5 and 36.7 μg?m?3, accounting for 44% and 62% of the PM2.5 mass concentration in the spring and summer, respectively. A diurnal pattern of SO 4 2- , NH 4 + and NO 3 - was observed in both campaigns and attributed to the upslope/downslope transport of air mass and the development of the planetary boundary layer (PBL). The average SO2 oxidation ratio (SOR) in summer was 57% (±27%), more than twice that in spring 24% (±16%); the fine nitrate oxidation ratio (NOR) was comparable in the two seasons (9?±?6% and 11?±?10% in summer and spring, respectively). This result indicates strong summertime production of sulfate aerosol. A principal component analysis shows that short-range and long-range transport of pollution, cloud processing, and crustal source were the main factors affecting the variability of the measured ions (and other trace gases and aerosols) at Mt. Tai. Strong indications of biomass burning were observed in summer. Cloud scavenging rates showed larger variations for different ions and in different cloud events. The elevated concentrations of the water soluble ions at Mt. Tai indicate serious aerosol pollution over the North China plain of eastern China.  相似文献   

    10.
    The concentrations of H+, nitrate (NO3 -), and sulfate (SO4 2-) in rainwater and their temporal changes were analyzed on the basis of continuous observation from 1 July 1991 to 30 June 1992 at a suburb of Nagoya, Japan. The yearly average for pH was 4.4. In general, an increasing pH with increase in precipitation amount was observed for rain events. Relatively high pH rainwater was sometimes observed at the beginning of rainfall, even though high concentrations of NO3 - and SO4 2- were involved. The high pH values were considered to be caused by the neutralization process with particulate matter containing cations. The yearly averaged ratio of equivalent concentration of nitrate to sulfate (N/S) in rainwater was 0.58. In the early stage of rain, the N/S value was usually more than 1.0 due to the difference of scavenging process between NO3 - and SO4 2-. High values of N/S ranging from 5 to 10 were found under the atmospheric conditions of calm winds and low humidity, during which it is possible that atmospheric particles float for a long time in the air before a rain event. The adsorption of NO3 - in the early stage of rainfall by particulate matter was suggested from the difference in scavenging processes of NO3 - and SO4 2-. A possible scavenging process, called limb cloud scavenging, is presented to explain the interaction of particles and nitrate ions at the early stage of rain. In limb cloud scavenging, the repeated migration of cloud particles or raindrops between the inside and outside of clouds increases the absorption of ions to a highly condensed level, thus increasing the N/S value of rainwater. The influence of global scale seasonal phenomena with large amounts of particulates, such as typhoons or Asian dust storms, was also studied.  相似文献   

    11.
    Analysis of wind profiles at the Boulder Tower (BAO) leads to these conclusions:
    1. The variation of roughness with wind direction found earlier is confirmed. Roughness lengths measured on the tower are larger than those measured close to the surface.
    2. The profiles and measurements of Reynolds stress are consistent with a von-Karman constant of 0.35.
    3. The form φm=(1?15z/L)-1/3 fits best in the range -0.6 < z/L < 0. In the range 0 < z/L < 0.5, θ m ~ 1 + 4.7z/L provides a good fit to the observations. For z/L < 0.1, φ m also depends on h, the thickness of the PBL. For z/L < -0.6, Φ m approaches the constant 0.5, in contrast to all previous suggestions. For larger stabilities, the upper level is usually not in the surface layer, and wind ratios become independent of z/L.
    4. With snow cover, the effective roughness diminishes to about 1 cm, even for directions for which the roughness length without snow is large.
    5. Estimation of winds at 100 or 150 m from information near the surface is best for similarity theory provided that the ratio of height to Monin-Obukhov L is less than 0.1. For larger z/L, simple power laws seem more appropriate.
      相似文献   

    12.
    The role of alkaline mineral aerosol in controlling HNO3 partitioning between gas and aerosol phases is explored using a comprehensive, process oriented three-dimensional model. Simulation results for March 1994, a period from the PEM West B experiment, are presented. It is found that in the dust impacted regions of the boundary layer and free troposphere, more than 50% of HNO3 ispartitioned onto dust particles; while 1050% of HNO3 in the boundarylayer and 10 30% of HNO3 in the free troposphere is partitionedonto sea-salt particles. This higher capacity of mineral dust to uptake HNO3 is due to the fact that carbonate in the dust particles is more volatile (thus easily replaced by nitrate) than chloride in the sea-salt particles. When this process of nitric acid partitioning onto alkaline particles is included in the analysis, model predicted HNO3-to-NOx ratios are much closer to observed valuesthat typically range between 1 and 9.  相似文献   

    13.
    14.
    For the first time, simultaneous study on physical and chemical characteristics of PM10, PM2.5, and rainwater chemistry was attempted over the Bay of Bengal in monsoon season of 2009. The aerosols and rainwater samples were collected onboard ship ‘SK-261, ORV Sagar Kanya’ during Oceanographic Observations in the Northern Bay of Bengal under the Continental Tropical Convergence Zone (CTCZ) program conducted during 16 July to 19 Aug 2009. Aerosol samples collected by PM10 and PM2.5 were analyzed for various water soluble (Na+, K+, Ca2+, Mg2+, NH 4 + , Cl?, SO 4 2? and NO 3 ? and acid soluble (Fe2+, Al3+, Zn2+, Mn3+ and Ni2+) ionic constituents. The pH of rainwater varied from 5.10 to 7.04. Chloride ions contributed most to the total ion concentration in aerosol and rainwater, followed by Na+. Significant contributions of SO 4 2? , NO 3 ? and NH 4 + found in PM2.5, PM10 and high concentrations of TSP and non sea-salt SO 4 2? over the mid-ocean is attributed to the long range transport of anthropogenic pollution from the Indian continent. The scavenging ratio was maximum for coarse particles such as Ca2+ and minimum for fine particles like NH 4 + .  相似文献   

    15.
    Field data for the unstable, baroclinic, atmospheric boundary layer over land and over the sea are considered in the context of a general similarity theory of vertical heat transfer. The dependence of δθ/θ* upon logarithmic functions of h c z T and stability (through the similarity function C) is clearly demonstrated in the data. The combined data support the conventional formulation for the heat transfer coefficient δθ/θ* when,
    1. the surface scaling length is z T (« z 0), the height at which the surface temperature over land is obtained by extrapolation of the temperature profile
    2. the height scale is taken as the depth of convective mixing h c
    3. the temperature profile equivalent of the von Karman constant is taken as 0.41
    4. areal average, rather than single point, values of δθ are employed in strongly baroclinic conditions. No significant effect of baroclinity or the height scale ratio as proposed in the general theory is found. Variations in C about a linear regression relation against stability are most probably due to uncertainties in the areal surface temperature and to experimental errors in general temperature measurements.
      相似文献   

    16.
    The internal boundary layer — A review   总被引:2,自引:2,他引:0  
    A review is given of relevant work on the internal boundary layer (IBL) associated with:
    1. Small-scale flow in neutral conditions across an abrupt change in surface roughness,
    2. Small-scale flow in non-neutral conditions across an abrupt change in surface roughness, temperature or heat/moisture flux,
    3. Mesoscale flow, with emphasis on flow across the coastline for both convective and stably stratified conditions.
    The major theme in all cases is on the downstream, modified profile form (wind and temperature), and on the growth relations for IBL depth.  相似文献   

    17.
    Shear flows generated by movement of the atmosphere near the earth's surface are accompanied by complexities not ordinarily encountered in the treatment of turbulent boundary layers. Problems arising from the following physical features are considered:
    1. thermal stratification;
    2. surface roughness in the form of forests and cities;
    3. non-uniformity of surface roughness and/or temperature (leading to 3-dimensional turbulent boundary layers);
    4. surface irregularities in the form of hilly and mountainous topography.
    The complex nature of atmospheric shear flows has stimulated efforts to study their characteristics in the laboratory under controlled conditions. Accordingly, questions of similarity between the laboratory and the atmospheric flows for both mean and turbulent quantities arise. Similarity criteria, or appropriate scaling relationships, are discussed. Wind tunnels designed for investigations related to atmospheric shear flows are described. These facilities are shown to have a capability for simulating such flows for a wide range of the physical features listed above.  相似文献   

    18.
    Economics of climate policy and collective decision making   总被引:1,自引:0,他引:1  
    This paper explores the reasons why economic instruments of climate change are reluctantly applied and stresses the need for interdisciplinary research linking economic theory and empirical testing to deliberative political procedures. It is divided in three parts. The first one recalls the main issues in implementing Cost-Benefit Analysis such as information problems, uncertainties, discounting the future and irreversibilities. The second part shows how these issues can be treated in integrated assessment and techno-economic models and presents a case study, which shows that
    • The chosen scenario tends to stabilize atmospheric CO2 concentration at around 550 ppm in the long run.
    • Exclusion of possibility to trade CO2 emission permits under a cap regime would increase the cost of emission abatement for OECD countries.
    • Combining different flexibility instruments might lead to significant gains in the overall cost of climate policy.
    The third part presents results of a survey conducted among the main economic and environmental associations in Switzerland. The survey reveals conflicting views on economic instruments. It shows how the social acceptability of these instruments can be improved in taking explicitly into account these opposing views of special interest groups. Therefore, policy scenarios should be selected in combining techno-economic models with empirical studies about their political and normative context.  相似文献   

    19.
    The role of trace gases and aerosol particles in the control of sulfur and nitrogen levels in atmospheric precipitation is estimated on the basis of the enrichment factor in the precipitation of these elements relative to particulate matter in the air. By using air and precipitation chemistry data obtained at a Hungarian background air pollution station (K-puszta) it is found that the fraction of ammonium, nitrate and sulfate in precipitation, due to the removal of particulate matter is at least 59, 27 and 31%, respectively. The relationship between wet depositions and air concentrations of different species is determined statistically by applying daily data set. The regression equations obtained make the estimation of the sub-cloud scavenging ratios possible and they give some information on the magnitude of in-cloud scavenging processes. The results show that the in-cloud scavenging is a determining factor for precipitation sulfate, while it is relatively unimportant in the case of ammonium. The sub-cloud scavening of NO2 and SO2 is not too significant. However, for HNO3, and NH3 it is an effective process. The sub-cloud scavenging ratio of sulfur and nitrogen-containing particles varies around 0.25×106.  相似文献   

    20.
    Ground based measurements which were carried out in the Northern Sahel in southern Tunisia showed the following results:
    1. The albedo difference between ground and protected land is about 10%, half of the amount Charney (1975) used in his model.
    2. Bare soil is always warmer during times of bright sunshine than vegetated soil, which is in agreement with Jackson and Idso (1975). Temperature differences in excess of the 10 °C were observed between plants and the surrounding soil.
    3. For bare soil, the surface temperature increases with declining albedo. However the opposite holds true for plants. Here, when lowering the albedo, a decrease in temperature was found.
    4. In a sand dune field, the surface temperature depends strongly on the exposure. Surface temperature differences of 8 °C were observed for slopes of different exposures for measurements carried out around noon.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号