首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary An unusually strong nocturnal downvalley wind can be regularly observed in the upper Isar Valley close to Mittenwald (Bavarian Alps) when a high-pressure system is located over Central Europe or when ambient southerly winds are present. Due to the structure of the local topography, this downvalley wind has foehn-like properties in the sense that the breakthrough of the flow into the valley is characterized by a strong increase in temperature and a decrease in relative humidity. Therefore the author called this flow Minifoehn. In fact, wind speeds are low in comparison to deep foehn, but gusts may reach values up to 20ms–1, even under the influence of high pressure systems with weak atmospheric pressure gradients. To investigate the Minifoehn, surface stations have been installed for collecting temperature, humidity, wind and pressure data. Measurements have shown that the Minifoehn represents the upper part of one of the drainage currents which flows over a mountain ridge into the valley at Mittenwald. Nocturnally cooled air drains from a plateau south of Mittenwald through different valleys which merge again near Mittenwald. It seems that the forcing of the nocturnal currents is dominated by the temperature difference between this plateau and the free atmosphere above Mittenwald at the same level. Strong temperature differences are found during clear winter nights and in case of subsidence inversions. Moreover, the appearance of the Minifoehn in autumn and winter is so frequent that we even may find a climatic effect: the upper Isar Valley is usually free of fog during these seasons and nocturnal temperatures are often considerably higher than in other Bavarian Alpine valleys at comparable altitude.  相似文献   

2.
Summary This study presents an analytical investigation of the local behaviour of the solution to a mesoscale model with Newtonian nudging when observed winds are time varying. The analysis examines each Fourier component of the time series of observed winds. Unlike the case with a constant observed wind, the nudged wind vector does not asymptotically approach the observed wind. In response to sinusoidal oscillation of the observed wind, the nudged wind vector is always on a half circle connecting the vector ends of the observed and un-nudged modelled winds. When nudging parameter 0, the nudged wind vector approaches the un-nudged wind; when , the nudged wind vector approaches the observed wind. For commonly used values of nudging parameter , the modelled wind field always carries errors.A target nudging scheme is devised in this study in order to ensure the model result is identical to observed winds with sinusoidal oscillation. Investigation shows that such a target wind exists for a finite value of , and the magnitude of the target-nudging term is about the same as that of a normal nudging term if f, wheref is the Coriolis parameter and is the frequency of the wind oscillation.With 7 Figures  相似文献   

3.
Intensive observations of summertime up- and down-valley winds in a dry valley utilising airsondes, pilot balloons and a monostatic acoustic sounder are described. Both circulations show a distinctive layered vertical wind and temperature structure. Westerly down-valley flow is typically neutral and is characterised by strong surface winds overlain by light variable winds extending to an inversion between 2000 and 4000m in depth. Above this inversion, gradient winds prevail. This structure is similar to that of downslope winds observed elsewhere. The thermally-induced up-valley easterly flow is shown to be extremely well-developed in terms of its strength, depth and persistence. The strong surface easterly may reach 800 m in depth and usually undercuts the warmer westerly. The boundary between the two regimes is marked by an inversion. During easterly flow a surface-based, super-adiabatic layer of 100–200 m in depth is evident and is associated with weak convective activity. An intriguing aspect of the wind regime is the interaction between the easterly and westerly circulations in the valley. These are separated at the surface by a frontal zone which migrates up and down the valley. Further observational and modelling studies are recommended.  相似文献   

4.
Summary Koshava is a gusty wind of moderate to strong intensity, blowing from the south-eastern direction, over the area of the Republic of Serbia. It is caused by the interaction between the synoptic circulation and the orography of the Carpathian and the Balkan mountains. The Koshava wind can damage buildings, factories and industrial plants or city infrastructure. Therefore it is important to estimate its gust and the gustiness factor on the basis of the measured data.This paper discusses a statistical analysis of wind data in the maximum influence area of the Koshava wind in the periods of maximum duration of Koshava. The focus of the paper is the examination of urban and suburban effects on Koshava wind and the correlation between the instantaneous maximum wind speed and the hourly mean wind speed. The best fitting with various empirical distributions is proposed.With 10 Figures  相似文献   

5.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

6.
Summary Dramatic examples of forecast failures in global models of moderate resolution (i.e., T106) have been shown to occur during periods of the negative phase of the Pacific/North American (PNA) pattern in the Northern Hemisphere winter. Specifically, in these periods forecast skills at 500hPa as measured by the standard anomaly correlation index dropped to rather low values by days 4 and 5 of the forecasts. This paper examines systematically some of the factors that may have contributed to the failure of these model forecasts.In particular, strong winds approaching intensities on the order of 100ms–1 south of Japan at the 200hPa level were degraded by the initialization and data assimilation procedures of the models. These observed winds were found to be supergradient in nature and representative of the anomalous solution of the gradient wind equation. Procedures such as the multivariate optimum interpolation (with its geostrophic constraints) and the normal-mode initialization including several vertical modes apparently were factors that led to the degradation of these strong winds in the initial model states. In this paper, an analysis of these factors is presented, and it is shown that uninitialized analyses (with no constraints) based on a simple successive correction procedure can retain the strong winds evident in the observations. Forecasts thus performed appear to retain wave trains, a characteristic feature of negative PNA initial states, leading to a significant improvement in forecast skill.  相似文献   

7.
The study focuses on a way to parameterize the effect of subgrid scale convective motions on surface fluxes in large scale and regional models for the case of light surface winds. As previously proposed, these subgrid effects are assumed to scale with the convection intensity through the relationship: where is the mean velocity of the wind, U0 the velocity of the mean wind, w* the free convection velocity, and an empirical coefficient to be determined. Both observations and numerical simulation are presently used to determine the free convection coefficient .Large eddy simulation of a fair weather convective boundary layer case observed during TOGA-COARE is performed. Comparisons between observations and the simulation of surface properties and vertical profiles in the planetary boundary layer are presented. The simulated vertical turbulent fluxes of heat, moisture and buoyancy range well within estimates from aircraft measurements.The most important result is that the true free convection coefficient , directly estimated from simulation, leads to a value of 0.65, smaller than the ones estimated from temporal and spatial variances. Using observations and simulation, estimates of from temporal and spatial variances are obtained with similar values 0.8. From both theoretical derivations and numerical computations, it is shown that estimates of the true from variances are possible but only after applying a correction factor equal to 0.8. If this correction is not used, is overestimated by about 25%. The time and space sampling problem is also addressed in using numerical simulations.  相似文献   

8.
A previously published technique for using tethered spherical balloons as anemometers for measuring light low-level winds has been further developed. Earlier data on the relationship between the aerodynamic drag coefficient and the Reynolds number of spherical rubber balloons were combined with a large number of new data and re-analysed; and the errors in the relationship were estimated. The results allowed a more accurate calculation of wind speed from the deflection of a tethered balloon from the vertical. When combined with a new technique for calculating the effects of the tether, this enabled light to moderate low-level winds at fixed heights up to 600 m or more to be measured with simple, cheap, and readily mobile equipment; and a slight modification of the technique allowed measurement of winds in and above fog. Wind speeds measured by the ballon technique showed reasonably good agreement with measurements by an anemometer carried beneath the balloon.Glossary of Symbols a, b, c Coefficients in the relationship between lnC d and lnR - A Quantity under square root in solution for lnV whena0 - C d Wind drag coefficient for balloon - C dc Value ofC d given by calibration curve of Table I - D Dynamic wind pressure force on balloon - F Buoyant free lift of balloon with load - Re Reynold's number of balloon (sphere) - R = Re/105 - r Radius of sphere - T Tension in tether - V Wind speed - 83() =(lnC dc -lnC d ) when 83° , or 0 for other - Error in lnC d - Elevation of tether where attached to balloon - Elevation of balloon from ground tether point - Molecular viscosity of air - Ratio of circumference to diameter of circle - Density of air  相似文献   

9.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

10.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

11.
The variations of and in the drainage flow in the Brush Creek valley of western Colorado are investigated using data from Doppler acoustic sodars and instrumented towers. The data were obtained on two experimental nights during the 1984 ASCOT field study. There is good agreement between the variations derived from low-level observations of the sodars and those derived from the towers located throughout the valley. The observed hourly average and in the nocturnal drainage flow are about 20 ° to 25 ° and 5 °, respectively; these values are much larger than those generally observed over flat terrain during nighttime stable conditions. After sunrise (about 0600 MST), as the valley warms and the flow direction changes to up-valley, these parameters increase sharply to their peak values at about 0800 MST and then decrease to their normal daytime values after about two hours.In the drainage flow, the hourly average varies inversely with wind speed according to the relation u 0.7ms-1. The vertical standard deviation is much less enhanced by complex terrain than the horizontal standard deviation. The observed values are predicted fairly well by the local similarity theory.Oak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 andOak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 and  相似文献   

12.
During the passage of a front, data from a light-weight cup anemometer and wind vane, sited in a steep-walled glacial valley of the Mt Cook region of the Southern Alps of New Zealand, were analysed to derive a power spectrum of the wind velocity for periods between 0.5 and 16 min. The energy spectrum roughly followed a -5/3 power law over the range of periods from 0.5–4 min — as might be expected in the case of an inertial subrange of eddies. However, any inertial subrange clearly does not extend to periods longer than this. We suggest that the observed eddies were generated in a turbulent wake associated with flow separation at the ridge crests, and large eddies are shed at periods of 4–8 min or more.A compressible fluid-dynamic model, with a Smagorinsky turbulence closure scheme and a law of the wall at the surface, was used to calculate flow over a cross section through this area in neutrally stratified conditions. A range of parameters was explored to assess some of the requirements for simulating surface wind gusts in mountainous terrain in New Zealand.In order to approximate the observed wind spectrum at Tasman aerodrome, Mount Cook, we found the model must be three-dimensional, with a horizontal resolution better than 250 m and with a Reynolds-stress eddy viscosity of less than 5 m2 s-1. In two-dimensional simulations, the eddies were too big in size and in amplitude and at the surface this was associated with reversed flow extending too far downstream. In contrast the three-dimensional simulations gave a realistic gusting effect associated with large scale cat's paws (a bigger variety of those commonly seen over water downstream of moderate hills), with reversed flow only at the steep part of the lee slope. The simulations were uniformly improved by better resolution, at all tested resolutions down to 250 m mesh size.The spectra of large eddies simulated in steep terrain were not very sensitive to the details of the eddy stress formulation. We suggest that this is because boundary-layer separation is forced in any case by terrain-induced pressure gradients.  相似文献   

13.
Summary The integral aerosol optical depths (k ) at the hour of 08:20 Local Standard Time (LST), are compared with those calculated previously at 11:20 and 14:20 LST, for clear days during summer in Athens over the period 1962–1988. The mean values at 08:20 LST were consistently lower than the values at 11:20 and 14:20 LST. The influence of the vertical wind profile on the values ofk was also investigated. A comparison was made of the wind profiles at 02:00 and 14:00 LST, for days in which the 11:20 and 14:20 LST values ofk were 0.200 andk 0.350, respectively. The corresponding bulk wind shear s was also found for the period 1980–1988. The most significant results occurred with the first category of days. The resultant wind velocities from the surface to the 900 hPa level, in each hour were higher by 2–4 m·s–1 with respect to the corresponding values for the second category. At 02:00 LST the bulk wind shear showed a considerable difference (1.8) between the two categories of days in the surface to 700 hPa layer at 02:00 LST. Finally, the associated weather conditions that appear to initiate a period of low values ofk (k 0.200) at 11:20 and 14:20 LST were examined for the period 1980–1988. Fifteen such cases were identified and it was found that they all occurred after the passage of weak cold fronts.With 6 Figures  相似文献   

14.
Whether in classical networks such as meteorological networks of in more recent ones of atmospheric chemistry, a wealth of data is at hand. These data have been evaluated in a manner depending on the purpose of the network. However, much more information is hidden in these time series and waits for discovery. Only the imagination of scientists is needed. Four examples are given which lead to new information about the atmospheric aerosol and the behaviour of the atmosphere. These examples are: Atmospheric turbidity from sunshine recordings, Meteorological drainage area from the variance of observations, Location of point sources from air mass trajectories, and Total vertical ozone from turbidity measurements.  相似文献   

15.
A liquid jet of 90 m diameter and variable length has been utilized to determine absorption rates and, hence, mass accommodation coefficients , of atmospheric trace gases. The compounds investigated are HCl (0.01), HNO3 (0.01), N2O5 (0.005), peroxyacetyl nitrate (>0.001), and HONO (0.005). It is concluded that the absorption of these trace gases by liquid atmospheric water is not significantly retarded by interfacial mass transport. The strengths and limitations of the liquid jet technique for measuring mass accommodation coefficients are explored.  相似文献   

16.
Summary With the typical geometry of a large Alpine valley in mind, a box-type model consisting of only one (Alpine) basin, the forelands, and one valley tube connecting those two has been set up. Using drastically simplified equations of motion, continuity and heat, and supposing weak-gradient synoptic conditions, a periodic solution for the daily wave of the valley wind regime is obtained.Fundamental concepts like the area-height distribution of valley segments, or the role of slope winds and other fast-reacting local circulations in heating or cooling the main valley and larger basins, are being incorporated. The solution has valley wind speeds correct in amplitude and phase, maximum upvalley wind occurring around 16 h local time. Valley winds attempt to equalize horizontal pressure differences, which are caused by the fact that the interior of valleys is being heated and cooled more strongly by a factor of 2 or more than the atmosphere over the adjacent plain = foreland. In this attempt, they reduce the temperature contrast somewhat, but not very much, because friction in the valley is a dominating process. The present model also nicely reproduces observed features of the daily pressure wave, including the existence of a level of pressure equalization (between the valley interior and the plain) at about crest height.
Grundzüge eines Talwindmodells
Zusammenfassung Ich habe das typische Relief eines großen Alpentals vor Augen, und konstruiere ein Schachtel-Modell, das drei schematische Regionen umfaßt: ein inneralpines Becken, das Alpenvorland, und eine Talröhre, die diese beiden verbindet. Die Impuls-, Kontinuitäts- und thermodynamische Gleichung werden in stark vereinfachter Form angesetzt, wobei eine gradientschwache Wetterlage vorausgesetzt wird. Wir untersuchen die tagesperiodische Lösung dieses Systems für Talwind, Temperatur, Luftdruck. In diesen Gleichungsansatz wurden grundlegende Konzepte eingearbeitet: z.B. die Flächen-Höhenverteilung des Beckens, oder die Rolle der Hangwinde und anderer kleinräumiger, schnell reagierender thermischer Zirkulationen, die die lokale Erwärmung/Abkühlung dem Haupttal bzw. größeren Talbecken mitteilen. Die vorliegende Lösung zeigt Talwindgeschwindigkeiten, deren Amplitude und Phase mit den Beobachtungen gut übereinstimmen: der Taleinwind hat sein Maximum um ca. 16 Uhr Lokalzeit (MEZ). Die Talwinde sind ein Versuch, horizontale Druckdifferenzen auszugleichen, die wiederum auf Grund der Tatsache entstehen, daß die Erwärmung/Abkühlung des Taiinneren um mehr als den Faktor 2 stärker ist als die der Luftsäule über dem angrenzenden Vorland. Bei diesem Versuch reduzieren die Talwinde den Temperaturkontrast, aber nur um weniges, da die Ausgleichsströmung durch die Talröhre starker Reibung unterliegt. Schließlich reproduziert das vorliegende Modell in zufriedenstellender Weise den tagesperiodischen Druckgang, wie er in verschiedenen Höhen beobachtet wird, vor allem auch das sogenannte Druckausgleichsniveau, das ungefähr in Kammhöhe liegt.


With 2 Figures  相似文献   

17.
In the summer of 1988/89 flights were carried out in the Coorong coastal area of South Australia to investigate sea-breeze fronts. The flights yielded data sets of the structure of the fronts in the cross-frontal direction with a spatial resolution of approximately 3 m. The study is focused on the budgets of sensible and latent heat in the vicinity of the front and on frontogenesis/frontolysis processes which are closely related to budget considerations.The frontogenesis relationships and the budgets were established on a 2 km length scale by low-pass filtering of the space series. As the wind components were measured with high accuracy, all processes which determine frontogenesis could be evaluated and are displayed in x,z-cross-sections: these are the confluence, shear and diabatic effects, all of which play a role in q/x-, q/z-, /x- as well as /z-frontogenesis. A detailed analysis is given for two different states of frontal development. The presented results shed much light on the governing physical processes in the frontal region with strong emphasis on the effects of confluence-generated updrafts, on shear instabilities causing bulges and clefts in the frontal surface as well as producing the elevated frontal head, and on processes related to differential heating and moistening.  相似文献   

18.
The winter-time arctic atmospheric boundary layer was investigated with micrometeorological and SF6 tracer measurements collected in Prudhoe Bay, Alaska. The flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. The relatively warm maritime air mass originating over the nearby, partially frozen Beaufort Sea is cooled at the tundra surface resulting in strong (4 to 30 °C · (100 m)-1) temperature inversions with light winds and a persistent weak (1 to 2 °C · (100 m)-1) surface inversion with wind speeds up to 17 m s-1. The absence of any diurnal atmospheric stability pattern during the study was due to the very limited solar insolation. Vertical profiles were measured with a multi-level mast from 1 to 17 m and with a Doppler acoustic sounder from 60 to 450 m. With high wind speeds, stable layers below 17 m and above 300 m were typically separated by a layer of neutral stability. Turbulence statistics and spectra calculated at a height of 33 m are similar to measurements reported for non-arctic, open terrain sites and indicate that the production of turbulence is primarily due to wind shear. The distribution of wind direction recorded at 1 Hz was frequently non-Gaussian for 1-hr periods but was always Gaussian for 5-min periods. We also observed non-Gaussian hourly averaged crosswind concentration profiles and assume that they can be modeled by calculating sequential short-term concentrations, using the 5-min standard deviation of horizontal wind direction fluctuations () to estimate a horizontal dispersion coefficient ( y ), and constructing hourly concentrations by averaging the short-term results. Non-Gaussian hourly crosswind distributions are not unique to the arctic and can be observed at most field sites. A weak correlation between horizontal ( v ) and vertical ( w ) turbulence observed for both 1-hr and 5-min periods indicates that a single stability classification method is not sufficient to determine both vertical and horizontal dispersion at this site. An estimate of the vertical dispersion coefficient, z , could be based on or a stability classification parameter which includes vertical thermal and wind shear effects (e.g., Monin-Obukhov length, L).  相似文献   

19.
Parameterization of evaporation from a non-plant-covered surface is very important in the hierarchy strategy of modelling land surface processes. One of the representations frequently used in its computation is the resistance formulation. The performance of the evaporation schemes using the , , and their combination resistance approaches to parameterize evaporation from bare soil surfaces is discussed. For that purpose, the nine schemes, based on a different dependence of and on volumetric soil moisture content and its saturated value, are used.The tests of performances of the considered schemes are based on time integrations by the land surface module (BARESOIL) using observed data. The 23 data sets at a bare surface experimental site in Rimski anevi, Yugoslavia on chernozem soil, were used for the resistance algorithm evaluation. The quality of the schemes was compared with the observed values of the latent heat flux using several statistical parameters.  相似文献   

20.
A diagnostic model is a relatively simple and practical tool for modeling the wind flow of the boundary layer in complex terrain. The model begins with a wind analysis based on available surface wind reports and geostrophic winds (computed from pressure data). The height of the boundary layer top (upper surface of the computational domain) is prescribed to fit local conditions. Using the continuity equation in terrain-following coordinates, the winds at mesh points are adjusted to produce nondivergence while maintaining the original vertical component of vorticity. The method of computing the nondivergent winds uses direct alterations. This method may be useful for other modeling purposes and will be described. Data for a long period (usually a year) are analyzed to obtain eigenvectors and the associated time series of their coefficients at each observation time. The model is run only for the five or six eigenvectors that explain most of the variance. The wind field at any particular time is reconstructed from the eigenvector solutions and their appropriate coefficients. Comparisons of model results with measured winds at sites representing different types of terrain will be shown. The accuracy and economy of the model make it a useful tool for estimating wind energy and also for giving wind fields for low-level diffusion models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号