首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposi...  相似文献   

2.
Class 1 gas hydrate accumulations are characterized by a permeable hydrate-bearing interval overlying a permeable interval with mobile gas, sandwiched between two impermeable intervals. Depressurization-induced dissociation is currently the favored technology for producing gas from Class 1 gas hydrate accumulations. The depressurization production technology requires heat transfer from the surrounding environment to sustain dissociation as the temperature drops toward the hydrate equilibrium point and leaves the reservoir void of gas hydrate. Production of gas hydrate accumulations by exchanging carbon dioxide with methane in the clathrate structure has been demonstrated in laboratory experiments and proposed as a field-scale technology. The carbon dioxide exchange technology has the potential for yielding higher production rates and mechanically stabilizing the reservoir by maintaining hydrate saturations. We used numerical simulation to investigate the advantages and disadvantages of using carbon dioxide injection to enhance the production of methane from Class 1 gas hydrate accumulations. Numerical simulations in this study were primarily concerned with the mechanisms and approaches of carbon dioxide injection to investigate whether methane production could be enhanced through this approach. To avoid excessive simulation execution times, a five-spot well pattern with a 500-m well spacing was approximated using a two-dimensional domain having well boundaries on the vertical sides and impermeable boundaries on the horizontal sides. Impermeable over- and under burden were included to account for heat transfer into the production interval. Simulation results indicate that low injection pressures can be used to reduce secondary hydrate formation and that direct contact of injected carbon dioxide with the methane hydrate present in the formation is limited due to bypass through the higher permeability gas zone.  相似文献   

3.
The natural gas hydrate resource is tremendous.How to utilize the gas from hydrates safely is researchers' concern.In this paper,a one-dimensional model is developed to simulate the hydrate dissociation by depressurization in hydrate-bearing porous medium.This model can be used to explain the effects of the flow of multiphase fluids,the endothermic process of hydrate dissociation,the variation of permeability,the convection and conduction on the hydrate dissociation.Numerical results show that the hydrate dissociation can be divided into three stages:a rapid dissociation stage mainly governed by hydrate dissociation kinetics after an initially slow dissociation stage governed mainly by flow,and finally a slow dissociation stage.Moreover,a numerical approach of sensitivity analysis of physical parameters is proposed,with which the quantitative effect of all the parameters on hydrate dissociation can be evaluated conveniently.  相似文献   

4.
天然气水合物广泛分布于陆地冻土带和深海地层,资源潜力巨大,其中Ⅱ类水合物藏占有重要地位。为加强对Ⅱ类水合物藏开采规律的认识,结合实际水合物藏参数,使用数值模拟方法研究了热水驱替开采Ⅱ类水合物藏的动态规律,并与降压法的开采效果进行了对比分析。结果表明:①热水驱替开采Ⅱ类水合物藏时,产气速率和分解气速率首先快速上升,然后以较快速度下降至趋于相对稳定;累产气和累分解气上升较快;气体采出程度和水合物分解程度均处于较高水平(>60%)。②热水驱替对Ⅱ类水合藏的开采具有一定的适应性,与降压法开采相比,热水驱替方式下储层水合物的分解更彻底,气体采出程度、水合物分解程度也更优,但具有较低的累积气水比,产水量较大。  相似文献   

5.
Abstract

Large reserves of natural gas hydrates exist, and the depressurization method has the greatest potential for gas hydrate reservoir recovery. Currently, the most commonly adopted depressurization simulation method is a constant bottom-hole pressure production scheme. This study proposes a new depressurization mode with decreasing bottom-hole pressure. The production characteristic was numerically investigated using this method. The results show the following: (1) As the depressurization exponent (n) decreases, the development effect improves, and production indexes including cumulative gas production/dissociation and gas-water ratio increase. However, the reservoir energy consumption is higher and the hydrate reformation is more severe. (2) Compared to the proposed depressurization mode, the hydrate production index of the constant bottom-hole pressure production (n?=?0) is better. However, the hydrate reservoir energy consumption is higher and the hydrate reformation is more severe using constant bottom-hole pressure production. (3) To achieve a balance between production and reservoir energy consumption during depressurization production, the bottom-hole pressure should be controlled by selecting a suitable depressurization exponent between nmin and nmax, which can be determined through numerical simulations.  相似文献   

6.
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.  相似文献   

7.
In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using impermeable boundaries. The main reason for the reduced productivity is water influx from the surrounding strata; a secondary cause is gas escape into the overburden. The results dictate that in order to reliably estimate production potential, permeability of the surroundings has to be included in a model.  相似文献   

8.
海洋天然气水合物稳定带气烟囱结构中存在被水合物充填的裂隙, 表明在自然条件下沉积物中曾发生过流体压裂以及相关的流体流动和水合物形成。在水合物稳定带内实施人为的流体压裂工程, 并联合其他方法(如降压或注热)进行水合物开采, 有望提高开采效率。水合物稳定带内, 无论是自然条件下发生的流体压裂过程, 还是人为实施的流体压裂工程, 都存在水合物反应和沉积物裂隙变形之间的耦合响应。当前, 已有不少数值程序对水合物反应与沉积物弹塑性变形的耦合过程进行了定量研究, 但尚没有数值程序能够计算水合物反应和离散裂隙变形之间的耦合过程。文章将TOUGH+Hydrate程序、IC-FERST和Solidity两者的耦合程序进行了进一步耦合, 为水合物稳定带内的流体压裂计算提供了一种耦合计算方法, 同时通过一个算例初步验证了该耦合计算方法的可行性。验证结果表明, 该耦合计算方法经进一步改进后有望应用于定量研究水合物稳定带内的裂隙变形和水合物反应过程。  相似文献   

9.
海洋天然气水合物开采方法及产量分析   总被引:2,自引:0,他引:2  
海洋天然气水合物的巨大储量刺激了世界各国能源部门努力研究如何从天然气水合物储层生产天然气。根据水合物形成的条件,只有当水合物处在其相平衡条件以外,水合物才能分解。因此,水合物的开采方法只能为热熔法、抑制剂刺激法、减压法和地面分解法。为了对天然气水合物储层中气体的生产有个定量的评估,本文以水合物开采井为例,运用数学方法推导了水合物井中气体的产生量。结果表明,在天然气水合物储层中,天然气释放量是井内水合物分解温度、压力及水合物层气体渗透性的敏感函数。该函数可以用于天然气水合物井气体开采量的计算及对水合物储层可开采性评价。  相似文献   

10.
According to the preliminary geological data of gas hydrate bearing-sediments (GHBS) at site GMGS3-W19 in the third Chinese expedition to drill gas hydrates in 2015, a production model using three different recovery pressures was established to assess the production feasibility from both production potential and geomechanical response. The simulation results show that for this special Class 1 deposit, it is a little hard for gas production rate to reach the commercial extraction rate because the degree of hydrate dissociation is limited due to the low reservoir permeability and the permeable burdens. However, the free gas accumulating in the lower part of the GHBS can significantly increase gas-to-water ratio. It also generates many secondary hydrates in the GHBS at the same time. Decreasing the well pressure can be beneficial to gas recovery, but the recovery increase is not obvious. In term of geomechanical response of the reservoir during the gas recovery, the permeable burdens are conducive to reduction of the sediment deformation, though they don't facilitate the gas recovery rate. In addition, significant stress concentration is observed in the upper and lower edges of GHBS around the borehole during depressurization because of high pressure gradient, and the greater the well pressure drop, the more obvious the phenomenon. Yield failures and sand production easily take place in the edges. Therefore, in order to achieve the purpose of safe, efficient and long-term gas production, a balance between the production pressure and reservoir stability should be reached at the hydrate site. The production pressure difference and sand production must be carefully controlled and the high stress concentration zones need strengthening or sand control treatment during gas production. Besides, the sensitivity analyses show that the hydrate saturation heterogeneity can affect the production potential and geomechanical response to some extent, especially the water extraction rate and the effective stress distribution and evolution. Increasing GHBS and its underlying free gas formation permeabilities can enhance the gas production potential, but it probably introduces geomechanical risks to gas recovery operations.  相似文献   

11.
A series of tests were conducted in order to investigate the shear strength and deformation behavior of methane hydrate-bearing sediments during dissociation using the thermal recovery method or depressurization method. An innovative temperature-controlled high pressure triaxial apparatus which can reproduce the in situ conditions of hydrate reservoirs was used. The results indicate that: (1) the failure strength of isotropically consolidated methane hydrate-bearing sediments which dissociated completely using the thermal recovery method is less than that of pure Toyoura sand. However, the initial stiffness and volumetric strain are higher than that of pure Toyoura sand. (2) The thermal recovery method will cause the failure of methane hydrate-bearing sediments when the axial load is higher than the strength of methane hydrate-bearing sediments after dissociation. (3) The depressurization method will not cause collapse of methane hydrate-bearing sediments during depressurization. However, water pressure recovery will lead to failure when the axial load is larger than the strength of the methane hydrate-bearing sediments after dissociation. (4) The depressurization rate shows little effect on the ultimate deformation of methane hydrate-bearing sediments, while the initial deformation rate increases with increasing depressurization rate. (5) The larger the reduction of pore pressure, the larger axial strain and volumetric strain.  相似文献   

12.
The overall stability of marine strata holding gas hydrates is dependent on their shear strength characteristics. These characteristics, in turn, are dependent on thermal flux that is imposed for dissociation of the hydrates for the safe and efficient extraction of methane gas from the hydrate bearing sediments. Due to the imposition of thermal flux on these sediments, their fabric structure and pore space hydrate saturation changes, which impacts the overall stability of the sea bed. Estimating stability conditions in such a ‘multiphase and dynamic system’ necessitates collection of undisturbed samples without compromising their in-situ thermodynamic conditions. This is a daunting task given the huge cost of procuring samples and the challenge of maintaining an undisturbed sample with in-situ thermodynamic conditions till it is brought to the laboratory. Synthesizing hydrate bearing sample sediments in laboratory for conducting studies to identify heat migration mechanisms and thermal property measurements and linking them to the shear strength characteristics provides an affordable solution to this problem. With this in view, a critical review of the available literature, dealing with laboratory synthesis of hydrate bearing sediments, their thermal and strength characteristics, the coupled phenomenon of heat and fluid migration, and its impact on the overall stability of marine sediments, has been conducted and presented in this paper. This will facilitate understanding the factors governing and the mechanism of heat transfer in a multiphase system, the changes in the system brought about by the hydrate dissociation front, and the overall impact on the stability of seabed.  相似文献   

13.
Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2CH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.  相似文献   

14.
为了研究天然气水合物降压开采过程的储层应力及其稳定性,运用线性多孔弹性力学和岩石力学知识,考虑水合物储层原始应力、孔隙压力、渗流附加应力及降压开采水合物过程中水合物饱和度的变化,建立了降压开采天然气水合物储层的力学模型,结合墨西哥湾某处水合物藏的基本参数,对降压开采水合物储层应力变化和开采过程的储层稳定性进行研究。结果表明:井底压力是影响水合物储层应力变化的关键因素之一;渗流附加应力在一定程度上减小了储层的应力;水合物分解储层应力发生变化,储层应力在井壁处的波动最大,井壁处是整个储层所受轴向偏应力最大的位置,因此井壁处是优先发生剪切破坏的位置;为了储层的稳定性,降压开采水合物生产压差应小于2.19 MPa。  相似文献   

15.
海底管道是海洋油气输送的重要纽带。为解决海底管道面临的水合物生成和堵塞问题,文章结合海底多相流管道水合物生成的数学模型,采用OLGA对海底管道不同含水率、气油比和流量下水合物的生成情况进行数值模拟。研究结果表明:在某海底管道的工艺参数条件下,水合物生成风险随着含水率和流量的增大而降低,随着气油比的增大而增加;海底水平管路和立管都有可能生成水合物,尤其立管常是水合物最大生成量的位置;模拟结果可为海底管道水合物的防治和保障海底管道的安全运行提供参考。  相似文献   

16.
多孔介质中水合物阻抗探测技术   总被引:12,自引:0,他引:12  
应用阻抗测量技术测试了多孔介质中CO2水合物的形成和分解过程。实验结果表明,阻抗测量可以反映水合物的形成特征。水合物在形成过程中的成核具有一定的随机性,说明相同温压条件下CO2水合物的成核机会均等。分解过程的热量吸收,可能形成体系内外的温度梯度。阻抗测量技术可以应用于水合物形成过程中的热过程和热力学研究。  相似文献   

17.
在海洋环境中多相流条件下应用减阻技术,可以在相同的管线压力下,有效提高油气输送量。减阻技术影响多相流的摩擦阻力、持液率和界面现象,可使多相流的的减阻率最高达到60%以上,可减少多相流体与管壁间的传热;某些情况下,减阻技术还能够改变多相流的流型、抑制剧烈弹状流,改善油气输送系统的运行工况。  相似文献   

18.
南海北部大陆边缘天然气水合物稳定带厚度的地热学研究   总被引:1,自引:1,他引:0  
The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environment of high pressure and low temperature,mainly distributing in the sediments of the seafloor in the continental margins and the permafrost zones in land.The accurate determination of the thickness of gas hydrate stability zone is essential yet challenging in the assessment of the exploitation potential.The majority of previous studies obtain this thickness by detecting the bottom simulating reflectors(BSRs) layer on the seismic profiles.The phase equilibrium between gas hydrate stable state with its temperature and pressure provides an opportunity to derive the thickness with the geothermal method.Based on the latest geothermal dataset,we calculated the thickness of the gas hydrate stability zone(GHSZ) in the north continental margin of the South China Sea.Our results indicate that the thicknesses of gas hydrate stability zone vary greatly in different areas of the northern margin of the South China Sea.The thickness mainly concentrates on 200–300 m and distributes in the southwestern and eastern areas with belt-like shape.We further confirmed a certain relationship between the GHSZ thickness and factors such as heat flow and water depth.The thickness of gas hydrate stability zone is found to be large where the heat flow is relatively low.The GHSZ thickness increases with the increase of the water depth,but it tends to stay steady when the water depth deeper than 3 000 m.The findings would improve the assessment of gas hydrate resource potential in the South China Sea.  相似文献   

19.
ABSTRACT

A model test program for studying soil stratum failure and pore pressure variation during tetrahydrofuran (THF) hydrate dissociation considering the effects of heating and drainage conditions is presented in this paper. The temperature and pore pressures are recorded during heating. Test results show that the THF hydrate would dissociate to be liquid and then gas when heating. Once pore pressure generated by the flow of released gas/water exceeded the strength of over layer, the layered fractures and soil-gas/water mixture outburst would occur. The high heating temperature and low permeability of over layer both cause excess pore pressure generation and more serious stratum failures.  相似文献   

20.
TOUGH+HYDRATE 水合物模型参数敏感性分析   总被引:1,自引:0,他引:1  
刘丽强  徐军  李雁  夏真  苏钰  苏洁 《海洋科学》2014,38(6):52-59
运用国际上较为先进的水合物开采模拟软件TOUGH+HYDRATE(T+H)对我国南海水合物藏竖井降压开采假设进行数值模拟,采用LH-OAT全局敏感性分析方法,对模型中19个普遍应用的水合物层参数进行了敏感性分析,并对参数敏感性从重到轻进行了极敏感、敏感、一般敏感和不敏感4个水平的等级划分。研究表明:T+H的参数敏感性随评价目标、时间和空间位置的不同而不同。对CH4气体累积产量有显著影响的参数有:Stone指数(n)、固相渗透率缩减指数(PRE)、绝对渗透率(Permeabilities)、流体临界饱和度(CMPS)。随着模拟时间的增加,参数对水合物饱和度的整体敏感度提高。在空间分布上,随着与井壁水平距离的增加,所有参数对水合物饱和度的敏感度降低。敏感参数的确定对提高模型的准确性有重大意义。在实际应用中要有针对性地调节参数,以获得最优效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号