首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
论氢化物是成矿的重要迁移形式   总被引:11,自引:2,他引:11       下载免费PDF全文
通过对氢与化学元素起源的相关性,一些类地行星大气含氢及氢化物,单质及合金氢化物的形成条件和理化性质的讨论,结合现代火山、温泉气体组成,矿物岩石流体包裹体化学成分,认为在地球深部高压富氢强还原性环境,含有单质及合金氢化物。这些氢化物较对应的单质、合金的熔点、沸点低许多,具有高扩散性、高化学活性、易碎性,可形成具个性差异的氢化物气体、液体和纳米固体氢化物粒子,并能在多次地质事件中反复迁移,直至地球浅部。由于压力、温度骤降,氧逸度剧增,酸碱度发生变化,上述氢化物分解、水解、氧化、硫化沉淀富集形成各种矿床。  相似文献   

2.
论原始海洋水的酸碱度   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对地球各圈层岩性、流体演化特征及类地行星岩石、大气特征的考察 ,对产生酸碱机理及生物生存繁衍进化基本条件的研究 ,认为古地球强还原性原始海水偏碱性。强还原性的古地球无Cl2 、F2 等强氧化剂物质存在 ,无由它们直接产生HCl、HF的可能 ;氮主要以N2 、NH3 形式存在 ,硫呈S2 -、S2 -2 、S0 形式存在 ,碳主要呈碳氢化合物、碳的低价氧化物、C0 等还原态存在 ,缺游离氧将它们氧化成高价而产酸。而大量基性、超基性岩浆喷溢出地表使原始海洋水呈碱性 ,由于碱金属、碱土金属及其合金氢化物与硅的氢化物一同迁移至地表 ,即使含硅很高的酸性岩其热液流体也呈碱性。  相似文献   

3.
岩浆铜镍硫化物矿床的形成主要受控于地幔熔融过程和幔源岩浆在地壳浅部达到硫化物饱和。其中,幔部分熔融过程影响了岩浆侵入到地壳的方式和幔源岩浆中金属元素含量,高程度的地幔部分熔融有利于形成具有经济价值的岩浆铜镍硫化物矿床。幔源岩浆在地壳浅部达到硫化物饱和主要受控于温度、压力、氧逸度和成分的改变。分离结晶、CO2加入到岩浆中、岩浆混合、富硅的地壳物质混染和地壳S的加入等机制都可以造成岩浆达到硫化物饱和。其中地壳的S的加入被认为是最有效的机制。  相似文献   

4.
硼氢化物是形成硼矿床的重要迁移形式   总被引:6,自引:5,他引:6       下载免费PDF全文
经对硼氢化物的形成条件、内生硼矿物化学成分、矿物共生组合及盐湖卤水、热泉的有关物质浓度值研究后 ,认为硼氢化物是形成硼矿床的重要活化、迁移形式  相似文献   

5.
大陆漂移说     
大陆漂移说大陆漂移说(TheoryofContinentalDdrift)是解释地壳运动和现代大陆及海洋分布的一种假说。德国地球物理学家魏格纳于1912年提出。认为地壳是硅铝层漂浮在全球连贯的硅镁层上,硅镁层上无硅铝层之处是海洋。全球大陆在石炭纪以前...  相似文献   

6.
德州市深层地下水水质演化研究   总被引:1,自引:0,他引:1  
德州市属于典型的黄河下游冲积平原孔隙水水文地质区,这一地区地下淡水的天然水环境条件非常敏感和脆弱。由于持续开采地下水,使该区域地下水的水动力场和水化学场发生了较大变化。根据德州市地下水水质监测数据,本文论述了深层地下水的水质特征,分析研究了深层地下水的水质演化。结果表明:在开采条件和自然条件的共同作用下,HCO3-和Na+浓度呈现出持续升高趋势,矿化度、总硬度及其它主要水质指标的浓度变化较小。深层地下水水质演化的特点表现为水化学动态并不随季节变化,而是在开采条件下,随着深层地下水系统压力、氧化?还原环境条件的改变有所变化。地下水水质指标浓度的历年变化主要受到水文地球化学环境的影响。针对研究区地下水水质的演化趋势,提出了应进行深层地下水人工回灌和降氟改水的水质改善措施。  相似文献   

7.
海洋底层水成矿金属组分存在形式和沉淀矿物的定量研究   总被引:2,自引:0,他引:2  
该文以测试资料为依据,以溶液化学平衡反应模型理论计算为手段,对海盆和底层水的成矿金属组分存在形式和沉淀矿物进行定量计算,发现海洋底层水系统为非平衡的地球化学动力系统,系统中发生着活跃的物质和能量交换与转移,海洋底部现代正在发生沉淀作用。海洋底层水是一种典型的稀金属成矿溶液,除Fe在洋盆存在高价态外,Fe的其它组分形式及Mn、Cu、Ni、Co4种金属组分均以低价态的组分形式存在,它们不可能通过化学沉淀作用生成以高价态锰矿物为主的结核。Mn、Fe主要以胶体和微粒形态存在,其浓度比溶解态的浓度要高出数百倍甚至千倍。这些胶状的金属微粒流直接参与结核的生成,胶体化学作用是结核生成的主要成矿作用。  相似文献   

8.
民勤盆地地下水地球化学演化模拟   总被引:14,自引:4,他引:10  
根据稳定同位素分析,民勤盆地地下水在第四系总体补给环境较现代凉。在200m以下的深层地下水为晚更新世补给的古封存水,表现为还原环境。60m—120m左右的浅层水为古地下水与现代降水的混合水,但古地下水占的成分较多,部分水样为氧化环境。民勤盆地地下水地球化学特征主要形成于山区,在沿途运移过程强烈的蒸发浓缩作用占据主导地位,形成了浅层高矿化盐碱水,深层地下水活跃的阳离子交换作用形成高钠浓度水。通过利用PHREEEQC法对民勤盆地地下水化学进行质量平衡模拟,表明民勤盆地地下水水化学沿水流路径以HCO3^-、SO4^2-、Cl^-、Ca^2 、Na^ 升高为主要特征,方解石、白云石的饱和指数随水流路径有减少趋势,而石膏、芒硝和岩盐的饱和指数有增加的趋势:沿水流途径白云石、CO2、石膏、岩盐和芒硝溶解量逐渐增加是常量离子浓度升高的物质来源。  相似文献   

9.
甲烷是一种温室气体,将水体中的甲烷氧化是减少其向大气中排放的重要手段。为了研究水库水体中甲烷氧化作用的影响因素,于2020年12月25日,采集湖北省宜昌市梅子垭水库的水作为实验用水,利用自主研发的新型快速水-气平衡装置(FaRAGE),连接便携式温室气体分析仪,通过室内模拟实验,研究水温、光照强度、水体中的初始甲烷浓度和硝酸根含量对水体中甲烷氧化速率的影响。研究结果表明,当水温为25℃时,水体中甲烷的氧化速率最大,当水温低于25℃时,水温的升高有利于水体中甲烷的氧化,当水温高于25℃时,水温的升高能抑制水体中甲烷的氧化;在无光环境中,甲烷的氧化速率可以达到最大值,光照能抑制水体中甲烷的氧化;水体中的初始溶解甲烷浓度越高,水体中甲烷的氧化速率越大;在有氧水体中,当水体中初始硝酸根质量浓度为1.796~4.361 mg/L时,有利于水体中甲烷的氧化,当初始硝酸根质量浓度为3~4 mg/L时,其对甲烷氧化的促进作用最大。  相似文献   

10.
对2005―2006年间在粤西云浮市采集到的40场降水样品进行降水化学分析.结果表明,降水离子的平均浓度为730.62 μeq/L,高于云南丽江、青海瓦里关山、香港、广东广州和鹤山等地,大气污染比较严重;降水中主要阳离子成分是Ca2+和NH4+,阴离子成分是SO42?和NO3?,共占离子总浓度的83﹪;离子浓度高值出现在降水偏少的汛期过渡期,低值则发生在降水丰沛的前汛期、主汛期和台风雨期;云浮降水离子浓度受地壳来源、工业交通污染影响较大,海洋源影响较小.  相似文献   

11.
Water is a necessary element during gas hydrate formations. Therefore, by analyzing water depletion changes in media, the reaction characteristics of methane hydrate in media can be studied. In this study, two water sources supplying some liquid water which may be consumed by the methane hydrate formation reactions were designed and assembled. Using them, the full formation processes of methane hydrate was studied. Experimental results show the following: If heat released from nucleation reaction of methane hydrate is diffused rapidly, the nucleation ratios will be enhanced discernibly. While the hydrate is formed, a force is generated that sucks fresh water from the source into the vicinity of the hydrate, slowing down the cementation process and causing some hydrate grain dissociation. As a result of cementation differences, the hydrate reaction processes with different water sources present linear or quadratic equation characteristics. After a few repeated dissociation and formation processes of some hydrate grains caused by the fresh water, the gas amounts contained in hydrate will be significantly enhanced.  相似文献   

12.
The methane hydrate stability zone beneath Sverdrup Basin has developed to a depth of 2 km underneath the Canadian Arctic Islands and 1 km below sea level under the deepest part of the inter-island sea channels. It is not, however, a continuous zone. Methane hydrates are detected in this zone, but the gas hydrate/free gas contact occurs rarely. Interpretation of well logs indicate that methane hydrate occurs within the methane stability zone in 57 of 150 analyzed wells. Fourteen wells show the methane hydrate/free gas contact. Analysis of the distribution of methane hydrate and hydrate/gas contact occurrences with respect to the present methane hydrate stability zone indicate that, in most instances, the detected methane hydrate occurs well above the base of methane hydrate stability. This relationship suggests that these methane hydrates were formed in shallower strata than expected with respect to the present hydrate stability zone from methane gases which migrated upward into hydrate trap zones. Presently, only a small proportion of gas hydrate occurrences occur in close proximity to the base of predicted methane hydrate stability. The association of the majority of detected hydrates with deeply buried hydrocarbon discoveries, mostly conventional natural gas accumulations, or mapped seismic closures, some of which are dry, located in structures in western and central Sverdrup Basin, indicate the concurring relationship of hydrate occurrence with areas of high heat flow. Either present-day or paleo-high heat flows are relevant. Twenty-three hydrate occurrences coincide directly with underlying conventional hydrocarbon accumulations. Other gas hydrate occurrences are associated with structures filled with water with evidence of precursor hydrocarbons that were lost because of upward leakage.  相似文献   

13.
Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.  相似文献   

14.
近期系统的研究表明南极陆缘存在众多有利于天然气水合物赋存的指示性标志,尤其在陆缘周围的盆地中发现多条相关的地球物理反射层;同时,物源、温压、构造和沉积条件,皆有利于来自下部烃类气体的运移、富集和成藏,形成适合天然气水合物赋存的构造环境。在此基础上,利用收集的地热数据库,首先描述了陆缘周围的热流分布状况,再次计算了天然气水合物稳定带的厚度,最后利用体积分方法初步估算了该区域的天然气水合物的前景资源量。结果表明虽然陆缘周围的热流值相对较高,平均值达85.9 mW·m-2,但是由于陆缘海水深度大,形成足够强的压力,保证了天然气水合物的稳定赋藏,由此计算的前景资源量为0.97-1.63×1013 m3,表明具有可观的经济价值。  相似文献   

15.
常华进 《干旱区地理》2012,35(4):639-645
 青海省祁连山南缘多年冻土区发现天然气水合物,这是在我国冻土区的首次发现。虽然青海天然气水合物的发现与开发具有诸如能源战略等重要意义,但在多年冻土区开发天然气水合物具有巨大的环境影响风险,包括CH4释放对全球气候的影响、冻土层的退化和高寒草甸的破坏、开采过程中可能出现的塌方和地陷等。可以通过采用安全可靠的具有针对性的开发技术和工艺,将青海天然气水合物开发纳入柴达木循环经济范畴,采用CO2捕获和封存技术,以及控制工程过程等来防治天然气水合物开发过程中的环境影响。  相似文献   

16.
极地天然气水合物分布于南北极大陆及其毗邻海域的沉积物(岩)中,与广泛分布的永久冻土带密切相关,资源潜力巨大。极地天然气水合物储层类型主要为富砂沉积物储层,能提供天然气水合物高浓度聚集所需的储集渗透性,最可能实现远景勘探和商业利用。随着全球气候变暖,北冰洋海冰加速融化和航道开通,北极地区蕴藏的丰富资源都将从潜在利益变成现实利益,各国的权益纷争也将愈演愈烈。本文综述了极地天然气水合物勘探开发现状和相关国家的水合物开发政策,依据中国海陆域天然气水合物勘查开发现状,提出了中国参与极地天然气水合物研究和开发的思路和途径,为中国极地资源开发利用战略提供参考。  相似文献   

17.
本文通过相图分析,对利用不纯净十水芒硝与纯净氯化钾通过二步转化制取硫酸钾进行了物料配比计算.给出了最佳物料配比及十水芒硝中氯离子的最大含量,对实际生产有指导意义。  相似文献   

18.
This paper summarizes five 2007–2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.
  相似文献   

19.
In the offshore part of Beaufort–Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the –1°C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort–Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk–Kugmallit sequence. Hydrate–gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene).  相似文献   

20.
Analysis of geological and geophysical data from 150 wells in the Beaufort—Mackenzie region(study area between 68°30–70°00N and 131°–39°W) led to reinterpretation of the depth ofmethane hydrate stability and construction of the first contour maps displaying thickness of hydratestability zones as well as hydrate stability zone thicknesses below permafrost. Calculations werebased on construction of temperature-depth profiles incorporating regional heat-flow values, temperatureat the base of ice-bearing permafrost, and models relating thermal conductivity with depth.Data analysis indicates the presence and extent of the methane hydrate stability zone is relatedmainly to the history of permafrost development and less so by the relatively small regionalvariations of temperature gradients. Analysis of well logs and other indicators in conjunction withknowledge of the hydrate stability zone allows reevaluation of the location of possible gas hydrateoccurrences. Log analysis indicates that in the onshore and shallow sea area of theBeaufort—Mackenzie Basin, methane hydrate occurs in 27 wells. Fifteen of these locations coincides withunderlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrateoccurrences at greater depths than proposed for the methane hydrate stability zone described inthis study. Interpretation of geological cross sections reveals that hydratesare related mainly to sandy deltaic and delta-plain deposits in Iperk, Kugmallit, and Reindeer sequences althoughadditional hydrate picks have been inferred in other sequences, such as Richards. Overlyingpermafrost may act as seal for hydrate accumulations; however, the thickness of permafrost andits related hydrate stability zone fluctuated during geological time. It is interpreted that only inthe last tens of thousand of years (i.e., Sangamonian to Holocene), conditions for hydrates changedfrom nonstable to stable. During Early and Late Wisconsinan and Holocene time, conditions werefavorable for generation and trapping of hydrates. However, previously during Sangamonian time,less favorable conditions existed for hydrate stability. Gas release from hydrates may have occurredduring times when hydrate stability was nonexistent because of permafrost melting episodes. It isinterpreted that entrapment of gas in hydrate molecular structures is related to the existence ofconventional structural traps as well as less permeable sediments such as the Mackenzie BayFormation, which act as seal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号