首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we examine the axial angular momentum balance of a non-eddy-resolving global ocean general circulation model, from the perspective of the geographical and seasonal variability of angular momentum and from the perspective of the torques acting on the ocean through its surfaces. Our purpose is to provide an estimate of the magnitude of the seasonal storage of angular momentum in the ocean and hence the oceanic excitation of variability in length of day, and to elucidate the role of the ocean in transferring angular momentum between the atmosphere and the Earth's crust. We provide an assessment of the reliability of the model results by examining the sensitivity of the angular momentum and torque distributions to several model parameters.Although the Southern Ocean region containing the Antarctic Circumpolar Current (ACC) makes the largest contribution to both the annual mean oceanic angular momentum and its seasonal variability, inclusion of the rest of the world ocean reduces both of these quantities to about two-thirds of the value of the Southern Ocean alone. The annual, global mean angular momentum is found to be insensitive to most model choices except for the isopycnal diffusivity. The seasonal variability, on the other hand, is insensitive to the isopycnal diffusivity, but sensitive to the smoothness of the representation of topography and moderately sensitive to horizontal and vertical friction parameterizations. The torque balance at all latitudes, including within the Antarctic circumpolar belt, is between wind stress and bottom pressure torques. Horizontal friction torques are small but non-negligible. Bottom friction and storage of angular momentum are negligible in angular momentum budgets on seasonal time scales. Two commonly used wind stress climatologies, one based on historical marine meteorological observations and the other based on operational weather analyses, differ in the sign of the globally integrated wind stress torque.  相似文献   

2.
The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO2 agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO2 given the irreversible impacts of anthropogenic carbon emissions.  相似文献   

3.
围绕着海洋环流与气候变率的联系,概述了近年来有关温盐环流输送带路径、海洋环流在地球气候系统的热平衡和水循环中的作用、大洋温盐环流的稳定性和变率对气候的影响等方面的研究成果。  相似文献   

4.
The meridional overturning circulation (MOC) in the coupled ECHAM5/MPIOM exhibits variability at periods of near 30 years and near 60 years. The 30-year variability, referred to as interdecadal variability (IDV), exist in an ocean model driven by climatological atmospheric forcing, suggesting that it is maintained by ocean dynamics; the 60-year variability, the multidecadal variability (MDV), is only observed in the fully coupled model and therefore is interpreted as an atmosphere–ocean coupled mode. The coexistence of the 30-year IDV and the 60-year MDV provides a possible explanation for the widespread time scales observed in climate variables. Further analyses of the climatologically forced ocean model shows that, the IDV is related to the interplay between the horizontal temperature-dominated density gradients and the ocean circulation: temperature anomalies move along the cyclonic subpolar gyre leading to fluctuations in horizontal density gradients and the subsequent weakening and strengthening of the MOC. This result is consistent with that from less complex models, indicating the robustness of the IDV. We further show that, along the North Atlantic Current path, the sea surface temperature anomalies are determined by the slow LSW advection at the intermediate depth.  相似文献   

5.
In this study, we compare seven retrospective analyses of basin- to global-scale upper ocean temperature. The analyses span a minimum of 10 years during the 50-year period since World War II. Three of the analyses (WOA-94, WHITE, BMRC) are based on objective analysis and thus, do not rely on a numerical forecast model. The remaining four (NCEP, WAJSOWICZ, ROSATI, SODA) are based on data assimilation in which the numerical forecast is provided by some form of the Geophysical Fluid Dynamics Laboratory Modular Ocean Model driven by historical winds. The comparison presented here is limited to heat content in the upper 250 m, information that is available for all analyses. The results are presented in three frequency bands: seasonal, interannual (periods of 1–5 years), and decadal (periods of 5–25 years). At seasonal frequencies, all of the analyses are quite similar. Otherwise, the differences among analyses are limited to the regions of the western boundary currents, and some regions in the Southern Hemisphere. At interannual frequencies, significant differences appear between the objective analyses and the data assimilation analyses. Along the equator in the Pacific, where variability is dominated by El Niño, the objective analyses have somewhat noisier fields, as well as reduced variance prior to 1980 due to lack of observations. Still, the correlation among analyses generally exceeds 80% in this region. Along the equator in the Atlantic, the correlation is lower (30–60%) although inspection of the time series shows that the same biennial progression of warm and cool events appears in all analyses since 1980. In the midlatitude Pacific agreement among objective analyses and data assimilation analyses is good. The analysis of Rosati et al. [Rosati, A., Gudgel, R., Miyakoda, K., 1995. Decadal analysis produced from an ocean assimilation system. Mon. Weather Rev., 123, 2, 206.] differs somewhat from the others apparently because in this analysis, the forecast model is weighted more heavily relative to the observations. The analysis of Levitus et al. [Levitus, S., Boyer, T.P., Antonov, J., 1994. Interannual variability of upper ocean thermal structure. World Ocean Atlas, 1994, Vol. 5. Natl. Env. Satell. Data and Int. Serv., Natl. Oceanic and Atmos. Admin. Atlas series, Washington, DC, 176 pp.] has a much different spatial distribution of variability in the interannual band than the others. Partly, this results from the yearly time-averaging of this analysis. Three of the monthly analyses extend over 20 years and thus are useful for examining decadal variations. Comparison of these analyses shows in common a slow progression of warm water westward and then eastward along the equator in the tropical Pacific that is linked to the decadal fluctuations of El Niño.  相似文献   

6.
We investigate the effects of realistic oceanic initial conditions on a set of decadal climate predictions performed with a state-of-the-art coupled ocean-atmosphere general circulation model. The decadal predictions are performed in both retrospective (hindcast) and forecast modes. Specifically, the full set of prediction experiments consists of 3-member ensembles of 30-year simulations, starting at 5-year intervals from 1960 to 2005, using historical radiative forcing conditions for the 1960–2005 period, followed by RCP4.5 scenario settings for the 2006–2035 period. The ocean initial states are provided by ocean reanalyses differing by assimilation methods and assimilated data, but obtained with the same ocean model. The use of alternative ocean reanalyses yields the required perturbation of the full three-dimensional ocean state aimed at generating the ensemble members spread. A full-value initialization technique is adopted. The predictive skill of the system appears to be driven to large extent by trends in the radiative forcing. However, after detrending, a residual skill over specific regions of the ocean emerges in the near-term. Specifically, natural fluctuations in the North Atlantic sea-surface temperature (SST) associated with large-scale multi-decadal variability modes are predictable in the 2–5 year range. This is consistent with significant predictive skill found in the Atlantic meridional overturning circulation over a similar timescale. The dependency of forecast skill on ocean initialization is analysed, revealing a strong impact of details of ocean data assimilation products on the system predictive skill. This points to the need of reducing the large uncertainties that currently affect global ocean reanalyses, in the perspective of providing reliable near-term climate predictions.  相似文献   

7.
A new data insertion approach is applied to the Derber and Rosati ocean data assimilation(ODA) system,a system that uses a variational scheme to analyze ocean temperature and provide ocean model corrections continuously.Utilizing the same analysis component as the original system,the new approach conducts analyses to derive model corrections intermittently at once-daily intervals.A technique similar to the Incremental Analysis Update(IAU) method of Bloom et al.is applied to incorporate the corrections into the model gradually and continuously.This approach is computationally more economical than the original.A 13-year global ocean analysis from 1986 to 1998 is produced using this new approach and compared with an analysis based on the original one.An examination of both analyses in the tropical Pacific Ocean shows that they have qualitatively similar annual and interannual temperature variability.Howerver,the new approach produces smoother monthly analyses.Moreover,compared to the independent observations from current meters,the new equatorial currents are significantly better than the original analyses,not only in maintaining the mean state but also in capturing the annual and interannual variations.  相似文献   

8.
A new six-layer world ocean general circulation model based on the primitive system of equations is described in detail and its performance in the case of a homogeneous ocean is described. These test integrations show that the model is capable of reproducing the observed mean barotropic or vertically-integrated transport, as well as the seasonal variability of the major ocean gyres. The surface currents, however, are dominated by the Ekman transport, and such non-linear features as the western boundary currents and the equatorial countercurrents are poorly represented. The abyssal boundary countercurrents are also absent due to the lack of thermohaline forcing. The most conspicuous effect of the bottom topography on a homogeneous ocean is seen in the Southern ocean where the calculated Antarctic circumpolar transport through the Drake passage ( ≈ 10 Sv, with bathymetry included) greatly underestimates the observed transport (≈ 100 Sv).  相似文献   

9.
A new six-layer world ocean general circulation model based on the primitive system of equations is described in detail and its performance in the case of a homogeneous ocean is described. These test integrations show that the model is capable of reproducing the observed mean barotropic or vertically-integrated transport, as well as the seasonal variability of the major ocean gyres. The surface currents, however, are dominated by the Ekman transport, and such non-linear features as the western boundary currents and the equatorial countercurrents are poorly represented. The abyssal boundary countercurrents are also absent due to the lack of thermohaline forcing. The most conspicuous effect of the bottom topography on a homogeneous ocean is seen in the Southern ocean where the calculated Antarctic circumpolar transport through the Drake passage ( ≈ 10 Sv, with bathymetry included) greatly underestimates the observed transport (≈ 100 Sv).  相似文献   

10.
年代际气候变化作为年际和月季气候变化的重要背景,往往影响着年际和月季时间尺度的气候及特征。随着科学的发展进步和社会需求的提高,年代际气候变化已成为人们关注的重要问题。作为气候动力学和气候预测研究的重要内容之一,年代际气候变化及其动力学机制的研究在国内外都在蓬勃开展,并取得了不少的成果。本文除简要介绍了中国气候的年代际变化特征,将着重就年代际气候变化的可能机制作一个系统的综合性讨论,内容主要包括全球主要海温变化模态的影响、气候系统相互关系年代际变化的影响、大气行星尺度系统年代际变化的影响,以及太阳活动及火山爆发的影响等。大家知道,年代际气候变化研究十分重要,但也可以看到年代际气候变化的动力学机制却十分复杂,不少问题还没有搞的十分清楚,需要加大力量进行深入研究;我们相信,深入的研究结果必将对年代际气候变化的预测提供可靠的科学依据,进而推动年代际气候变化的业务预测及其能力的提高。  相似文献   

11.
12.
Bryan C. Weare 《Climate Dynamics》2014,43(5-6):1285-1301
El Niño/Southern Oscillation (ENSO) is the predominant interannual variability of the global climate system. How might ENSO change in a warmer world? The dominant two Combined Empirical Orthogonal Functions (CEOF) of the equatorial ocean temperature and zonal and vertical motion identify two modes that shown a transition in the eastern Pacific from a warming eastward/downward motion to a cooling westward/upward flow. These results also suggest consistent changes to the west and at depths down to 300 m. These dominate CEOFs provide a compact tool for assessing Coupled Model Intercomparison Project Phase 5 ocean model output for both the recent historical period and for the latter part of the twenty first century. Most of the analyzed models replicate well the spatial patterns of the dominant observational CEOF modes, but nearly always underestimate the magnitudes. Comparing model output for the twentieth and twenty first centuries there is very little change between the spatial patterns of the ENSO modes of the two periods. This lack of response to climate change is shown to be partly related to competing influences of climatic changes in the mean ocean circulation.  相似文献   

13.
本研究发展了一个全球海洋资料同化系统ZFL_GODAS。该系统是一个短期气候数值预测业务系统的子系统,为短期气候预测海气耦合模式提供全球海洋初始场。系统能够同化的观测资料包括卫星高度计资料、卫星海表温度(SST)资料,以及Argo、XBT、TAO等各种不同来源的现场温盐廓线资料。系统使用的海洋模式为中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室开发的气候系统海洋模式LICOM1.0,同化方案为集合最优插值(EnOI)方案。系统使用一个由海洋模式自由积分得到的静态样本来估计背景场误差协方差。这样的基于集合样本的背景场误差协方差具有多变量协变、各向异性的特征,且能反映海洋物理过程固有的空间尺度特征。针对EnOI同化程序的特点,开发了一套特色鲜明、负载均衡、高效的并行化同化程序。本文通过与不同类型观测资料的比较,对同化系统的性能进行了评估。通过比较海表温度和海面高度的年际变率,海表温度异常随时间的变化,SST、海面高度异常(SLA)以及次表层温盐预报产品的均方根误差,5年平均温度偏差廓线、平均盐度廓线、平均纬向流速廓线等发现:系统工作正常、同化效果较好;经过同化以后,各变量都更加接近观测,误差更小,与观测场的相关性更好,可以为短期气候预测系统提供较好的海洋初始场,也可以为物理海洋学的研究提供有效的再分析资料。  相似文献   

14.
评估了耦合气候系统模式FGOALS海洋同化试验对西北太平洋夏季降水和SST相关关系的模拟技巧,并对比了相应的观测海温强迫试验(AMIP)和历史气候模拟试验结果。结果显示,FGOALS海洋同化试验对亚洲季风区大部分海域夏季SST年际变化有较高的模拟技巧,但其对菲律宾以东海域模拟技巧较低。在西北太平洋夏季降水-SST相关关系方面,同化试验部分地再现了南海和菲律宾以东海域降水超前SST变化1个月和同时二者的负相关关系,优于AMIP试验但逊于自由耦合模拟试验。同化试验对SST倾向-降水相关关系的模拟技巧亦介于AMIP试验和自由耦合试验之间。观测中,西北太平洋夏季降水与环流异常受日界线附近和赤道东印度洋海洋大陆地区海温异常的遥强迫,并通过改变到达海表的净短波辐射通量影响局地SST异常,导致局地海温-降水和局地海温倾向-降水的负相关关系。在AMIP试验中,遥强迫导致的西北太平洋地区环流异常较之观测偏弱,由于缺少局地海气耦合过程,在西北太平洋多数地区表现为海温对大气的强迫作用,即SST-降水正相关关系。FGOALS同化试验和自由耦合试验考虑了局地海气耦合过程,虽然低估了遥强迫对西北太平洋地区夏季环流异常的影响,依然部分模拟出局地降水-SST负相关关系但较之观测偏弱。同时,自由耦合试验高估了西北太平洋20°N以南地区海温异常对大气环流异常的强迫,使得其对中国南海和日本岛以南海域SST-降水负相关关系的模拟稍优于同化试验。  相似文献   

15.
A simple idealized atmosphere–ocean climate model and an ensemble Kalman filter are used to explore different coupled ensemble data assimilation strategies. The model is a low-dimensional analogue of the North Atlantic climate system, involving interactions between large-scale atmospheric circulation and ocean states driven by the variability of the Atlantic meridional overturning circulation (MOC). Initialization of the MOC is assessed in a range of experiments, from the simplest configuration consisting of forcing the ocean with a known atmosphere to performing fully coupled ensemble data assimilation. “Daily” assimilation (that is, at the temporal frequency of the atmospheric observations) is contrasted with less frequent assimilation of time-averaged observations. Performance is also evaluated under scenarios in which ocean observations are limited to the upper ocean or are non-existent. Results show that forcing the idealized ocean model with atmospheric analyses is inefficient at recovering the slowly evolving MOC. On the other hand, daily assimilation rapidly leads to accurate MOC analyses, provided a comprehensive set of oceanic observations is available for assimilation. In the absence of sufficient observations in the ocean, the assimilation of time-averaged atmospheric observations proves to be more effective for MOC initialization, including the case where only atmospheric observations are available.  相似文献   

16.
ABSTRACT

Historical variability in sea surface temperature (SST) in the North Atlantic (NA) is examined using trend and Empirical Orthogonal Function (EOF) analyses of annual and summer means from three interpolated monthly datasets: Hadley Centre Sea Ice and Sea Surface Temperature (HadISST1), Extended Reconstruction of SST (ERSST), and Centennial in situ Observation-Based Estimates (COBE). Comparisons with time series of upper-ocean temperature from four monitoring sites off Atlantic Canada reveal substantial similarity in the interannual to multi-decadal variability but notable differences in the longer-term trends. The magnitude of decadal-scale variability is comparable to, or greater than, the long-term changes in all of the datasets; together with the trend discrepancies, this needs to be considered in climate change applications. Averaged over the NA, the annual means have a long-term increasing trend and a pronounced multi-decadal variation, resembling those in global mean (land-ocean) surface temperature and the Atlantic Multi-decadal Oscillation (AMO). There is remarkable similarity in the spatial and temporal variability of the three leading EOF modes from the different gridded datasets, with the first highly correlated with the AMO, the second modestly correlated with the winter North Atlantic Oscillation, and the third apparently related to ocean circulation variability. Trends since 1981 are generally two to three times larger than those since 1900 and 1950, which is at least partly related to the phase of the AMO. Trends in the summer means are generally larger than in the annual means. Overall, the results provide support for both anthropogenic global warming and decadal-scale natural variations making important contributions to ocean climate variability in the Northwest Atlantic.  相似文献   

17.
A conceptual coupled ocean-atmosphere model was used to study coupled ensemble data assimilation schemes with a focus on the role of ocean-atmosphere interaction in the assimilation. The optimal scheme was the fully coupled data assimilation scheme that employs the coupled covariance matrix and assimilates observations in both the atmosphere and ocean. The assimilation of synoptic atmospheric variability that captures the temporal fluctuation of the weather noise was found to be critical for the estimation of not only the atmospheric, but also oceanic states. The synoptic atmosphere observation was especially important in the mid-latitude system, where oceanic variability is driven by weather noise. The assimilation of synoptic atmospheric variability in the coupled model improved the atmospheric variability in the analysis and the subsequent forecasts, reducing error in the surface forcing and, in turn, in the ocean state. Atmospheric observation was able to further improve the oceanic state estimation directly through the coupled covariance between the atmosphere and ocean states. Relative to the mid-latitude system, the tropical system was influenced more by ocean-atmosphere interaction and, thus, the assimilation of oceanic observation becomes more important for the estimation of the ocean and atmosphere.  相似文献   

18.
The goal of this paper is to provide information on the sea level and upper ocean temperature variability and trends in the Cook Islands region within a global context. Oceanic fisheries variability and change take place within the physical environment. Because the state of the historical data set is not as would be desired, we begin with some review of data distribution issues. We provide some new results from the Cook Islands region but draw upon previous work for information about the global and ocean-basin scale context. There are clear trends over recent decades in sea level and, generally, in upper ocean temperature, but there is also substantial interannual and interdecadal variability, which are larger locally than globally. Because of this variability, it is not possible to say if recent Cook Islands regional trends are representative of longer-term trends, or if longer-term trends have increased recently. Trends in the Cook Islands region over the last four decades are ~0.1–0.3 °C per decade in near surface temperature and ~2–3 cm sea level per decade.  相似文献   

19.
This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a global cooling in the range of –0.06 to –0.22 °C, though this effect is not found to be detectable in observed temperature trends. We then include the effects of natural forcings (volcanic aerosols, solar insolation variability and orbital changes) and other anthropogenic forcings (greenhouse gases and sulfate aerosols). Transient model runs from the year 1700 to 2000 are presented for each forcing individually as well as for combinations of forcings. We find that the UVic Model reproduces well the global temperature data when all forcings are included. These transient experiments are repeated using a dynamic vegetation model coupled interactively to the UVic Model. We find that dynamic vegetation acts as a positive feedback in the climate system for both the all-forcings and land cover change only model runs. Finally, the biogeochemical effect of land cover change is explored using a dynamically coupled inorganic ocean and terrestrial carbon cycle model. The carbon emissions from land cover change are found to enhance global temperatures by an amount that exceeds the biogeophysical cooling. The net effect of historical land cover change over this period is to increase global temperature by 0.15 °C.  相似文献   

20.
庄晓宵  林一骅 《大气科学》2014,38(2):251-260
本文使用欧洲中期天气预报中心(European Center for Medium Range Weather Forecasting,ECMWF)近30年(1982~2011年)全球再分析资料(ECMWF 40 Year Re-analysis Interim)中的风场及海浪场资料,对全球海表10 m风场、有效波高、平均周期和平均波向进行了统计分析,并定义了一种计算季节变率的方法。研究发现,有效波高和平均周期均存在明显的季节变化,且北半球大洋比南半球大洋季节变化更为明显,印度季风区则例外。另外尝试用波龄揭示风浪、涌浪的分布特征,证实了全球海洋为涌浪占主导及太洋东部存在涌浪强化,同时发现了涌浪的分布在春夏季变化明显的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号