首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
李识博  王常明  马建全  王钢城 《岩土力学》2013,34(11):3299-3305
为了解黄土三轴剪切过程中的微观变化,采用PFC3D建立黄土三轴试验模型,模拟围压分别为0、50、150、300 kPa的三轴剪切试验,并与室内试验进行对比分析。分析结果表明:PFC3D能够较好地模拟出不同围压下从开始到破坏到残余变形整个过程中应力-应变的变化规律,且位移场及接触应力场的变化规律与室内三轴试验宏观现象较一致;发现弹性模量、泊松比及峰值强度与数值模型中微观参数有着密切的联系,如法向刚度kn控制试样宏观弹性模量,kn /ks值控制泊松比,摩擦系数控制峰值强度;通过体应变-轴向应变曲线发现,随着围压的增加应变能增大,试样呈现出由体积膨胀到体积减缩的变化规律。其研究结果为进一步探究黄土的应力-应变性状及抗剪强度特性提供参考。  相似文献   

2.
史玲  蔡美峰 《岩土力学》2012,33(3):739-744
节理在固定法向压力刚度(CNS)条件下的剪切过程比较复杂,剪切中由于剪胀的存在使得法向压力增大,而法向压力的增加又限制了剪胀的发生。根据CNS剪切过程中某一瞬时状态下法向压应力大小,以节理在该法向压应力下法向剪胀位移与剪切位移的关系为基础,建立一个楔形物理模型。通过循环迭代求得CNS剪切过程中每一步的法向压应力值,进而得到整个过程的剪切应力值。通过该模型,讨论了节理各参数对CNS剪切过程的影响,结果表明,其剪切应力值受法向压应力刚度与节理法向变形参数共同协调控制(包括单轴压缩变形及剪胀角的磨损),节理在剪切过程中越不易发生压缩变形,其剪切应力值越大。  相似文献   

3.
Different failure modes during fracture shearing have been introduced including dilation, sliding, asperity cut-off and degradation. Several laboratory studies have reported the complexity of these failure modes during shear tests performed under either constant normal load (CNL) or constant normal stiffness (CNS) conditions. This paper is concerned with the mechanical behaviour of synthetic fractures during direct shear tests using a modified shear cell and related numerical simulation studies. The modifications made to an existing true triaxial stress cell (TTSC) in order to use it for performing shear tests under CNL conditions are presented. The large loading capacity and the use of accurate hydraulic pumps capable of applying a constant shear velocity are the main elements of this cell. Synthetic mortar specimens with different fracture surface geometries are tested to study the failure modes, including fracture sliding, asperity degradation, and to understand failure during shearing. A bonded particle model of the direct shear test with the PFC2D particle flow code is used to mimic the tests performed. The results of a number of tests are presented and compared with PFC2D simulations. The satisfactory results obtained both qualitatively and quantitatively are discussed.  相似文献   

4.
Cui  Ming-Juan  Zheng  Jun-Jie  Dahal  Bhim Kumar  Lai  Han-Jiang  Huang  Zhan-Fang  Wu  Chao-Chuan 《Acta Geotechnica》2021,16(5):1429-1439

Calcareous sand, a special type of sand commonly used for the construction of coastal engineering in tropical coasts, is usually required to be strengthened due to its poor engineering mechanical properties. Microbially induced carbonate precipitation has been proved to be a promising method for this purpose. A higher cementation level generally leads to a greater strength enhancement, but tends to cause brittle failure of bio-cemented calcareous sand, which in turn brings great potential risks for the coastal engineering. Therefore, the shear behaviour, especially the brittle behaviour, of bio-cemented calcareous sand needs to be understood properly, and taking some measures to improve its brittle behaviour is also necessary. In this regard, a series of triaxial compression tests were conducted to study the shear behaviour of bio-cemented calcareous sand with various cementation levels, and the waste rubber particles are used to improve the brittle behaviour of bio-cemented calcareous sand. The test results show that the shear strength of bio-cemented calcareous sand increases with the increase in cementation level, and the brittle behaviour is significant gradually. The waste rubber particles contribute to improve the brittle behaviour of bio-cemented calcareous sand, reducing the dilation of bio-cemented calcareous sand and slowing the changes in dilatancy with the increment of stress.

  相似文献   

5.
Bonded particle modelling (BPM) is nowadays being extensively used for simulating brittle material failure. In BPM, material is modelled as a dense assemblage of particles (grains) connected together by contacts (cement). This sort of modelling seriously depends on the mechanical properties of particle and contact, which are named here as micro‐parameters. However, a definite calibration methodology to obtain micro‐parameters has not been so far established; and many have reported some serious problems. In this research, a calibration procedure to find a unique set of micro‐parameters is established. To attain this purpose, discrete element code of UDEC is used to perform BPM. This code can be conveniently developed by the user. The proposed BPM is composed of rigid polygonal particles interacting at their contact points. These contacts can undergo a certain amount of tension, and their shear resistance is provided by cohesion and friction angle. The results demonstrate that each material macro‐property (i.e. Young's modulus, Poisson's ratio, internal friction angel, internal cohesion, and tensile strength) is directly originated from and distinctly related to the contact properties (i.e. normal and shear stiffness, friction angel, cohesion, and tensile strength). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of aspect ratio on the mechanical behaviour and micromechanics of two different assemblies during drained triaxial shearing are reported in this paper. Discrete element simulations are done on two different sets of assemblies—first assembly consists of particles with aspect ratio 1.0 and second assembly consists of particles with aspect ratio 1.5. A log normal distribution of particle size is adopted for both the samples. The constitutive behaviour of the assemblies and the evolution of the microstructure of the samples under shearing are closely examined and is related to the aspect ratio of the particles constituting the assembly. The spherical harmonic distributions of contact forces and contact normals along with 3-D histograms are plotted to give quantitative information of the variation of these parameters as the loading progresses. The results indicate that as the aspect ratio increases, there is an increase in the maximum deviatoric stress at the macroscopic level. At the microscopic level, the values of the anisotropic coefficients which are representative of the microparameters also show an increase in the magnitude for the assembly with higher aspect ratio particles.  相似文献   

7.
This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage‐coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non‐linear viscoelastic model for the rate‐independent and rate‐dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three‐dimensional (3D) linear and damage‐coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user‐defined material model for the asphalt mastic to predict global linear and damage‐coupled viscoelastic behaviour of asphalt mixture. For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression‐fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period. In regard to damage‐coupled viscoelastic behaviour, cyclic loading responses of linear and rate‐independent damage‐coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate‐independent damage‐coupled viscoelastic behaviour are also investigated with finite element simulations of asphalt numerical samples. Further study describes loading rate effects on the asphalt viscoelastic properties and rate‐dependent damage behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
杨雪强 《岩土力学》2004,25(8):1211-1214
基于花岗岩的真三轴强度试验结果和双剪强度理论,考虑岩石在三轴压缩状态下和在三轴伸长状态下不同的强度特性,导出了花岗岩在三轴压缩状态下的 函数关系式和在三轴伸长状态下的 函数关系式,并分别将目前常用的 Gudehus-Arygris、William-Warnke、郑颖人、俞茂宏-刘风羽等角隅模型的屈服强度计算结果与花岗岩的真三轴强度试验结果进行了对比,得出了这些角隅模型能较为准确地预测屈服强度等一些有益的认识。  相似文献   

9.
The present paper investigates the mechanical behaviour of oil sand specimens in triaxial compression tests at both ambient and elevated temperatures. The emphasis is particularly on core sample disturbance and on the multiphase/strongly heterogeneous nature of the material that introduces difficulties in achieving an objective characterization of its shear behaviour. First, the effect of sample disturbance on the behaviour of the oil sand is studied. Tests are performed on both disturbed and recompressed specimens. Recompression to large stress prior to shearing improves evaluation of the initial stiffness and associated volumetric changes of the oil sand, strongly affected by sample disturbance. A method for the correction of test results obtained from disturbed specimens is also proposed. The corrected results are in good agreement with those pertaining to recompressed specimens. Furthermore, a general classification of the tested oil sands into lean and rich in bitumen, where the former shows much softer and weaker behaviour, is considered to help in addressing the variability in sample composition. As for thermal aspects, the experimental results indicate that both strength and stiffness exhibit a limited temperature dependency. The temperature does not affect lean oil sand specimens, whereas heating considerably increases deformability of rich specimens.  相似文献   

10.
A discrete element model is proposed to examine rock strength and failure. The model is implemented by UDEC which is developed for this purpose. The material is represented as a collection of irregular-sized deformable particles interacting at their cohesive boundaries. The interface between two adjacent particles is viewed as a flexible contact whose stress–displacement law is assumed to control the material fracture and fragmentation process. To reproduce rock anisotropy, an innovative orthotropic cohesive law is developed for contact which allows the interfacial shear and tensile behaviours to be different from each other. The model is applied to a crystallized igneous rock and the individual and interactional effects of the microstructural parameters on the material compressive and tensile failure response are examined. A new methodical calibration process is also established. It is shown that the model successfully reproduces the rock mechanical behaviour quantitatively and qualitatively. Ultimately, the model is used to understand how and under what circumstances micro-tensile and micro-shear cracking mechanisms control the material failure at different loading paths.  相似文献   

11.
循环剪切荷载作用下岩石节理变形特性试验研究   总被引:1,自引:0,他引:1  
刘博  李海波  刘亚群 《岩土力学》2013,34(9):2475-2481
以水泥砂浆为相似材料,制备3种岩壁强度、5种起伏角度的锯齿型节理试样;利用试验设备,进行了在4种法向应力下的循环剪切试验。根据试验结果,结合循环剪切试验特点,定义剪胀角来表征节理循环剪切的法向变形特性,以及剪切刚度来表征节理循环剪切的切向变形特性。基于不同起伏角、不同强度等级和不同法向应力下的节理试样循环剪切试验结果,分析了循环剪切过程中剪胀角和剪切刚度的变化规律;并利用不同条件下的试验结果,对比分析初始起伏角度、法向应力、岩壁强度对节理循环剪切变形特性的影响规律。研究发现:剪胀角、剪切刚度均随着剪切循环次数的增加而呈现先快、后慢的降低趋势,并且中低起伏角度节理的剪胀角、剪切刚度的降低趋势随着初始起伏角度、法向应力的增加而加快,随着岩壁强度增加而变慢,高起伏角度节理的剪胀角、剪切刚度的降低趋势基本保持不变。  相似文献   

12.
Soil improvement using fibres is widely used in soil stabilisation to prevent sand liquefaction. In order to study the undrained behaviour and liquefaction resistance of sand reinforced with polypropylene fibres, a series of triaxial compressive tests were conducted on unreinforced and reinforced Chlef sand with different contents of polypropylene fibres (0, 0.3, 0.5 and 0.8%). Samples were prepared at 30% and 80% relative densities representing loose and dense states respectively, and triaxial tests were performed at confining pressures of 50, 100 and 200 kPa. Tests results show that fibre inclusion has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is function of fibre content, relative density and confining pressure. The maximum strength improvement for both loose and dense fibre-reinforced sand is more pronounced at higher confining pressure and at higher fibre content.  相似文献   

13.
The paper describes the development of a technique to simulate triaxial tests on specimens of railway ballast numerically at the particle scale and its validation with reference to physical test data. The ballast particles were modelled using potential particles and the well‐known discrete element method. The shapes of these elemental particles, the particle size distribution and the number of particles (N = 2800) in each numerical triaxial specimen all matched closely to the real ballast material being modelled. Confining pressures were applied to the specimen via a dynamic triangulation of the outer particle centroids. A parametric study was carried out to investigate the effects on the simulation of timestep, strain rate, damping, contact stiffness and inter‐particle friction. Finally, a set of parameters was selected that provided the best fit to experimental triaxial data, with very close agreement of mobilized friction and volumetric strain behaviour. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The purpose of this paper is to investigate mechanical and hydraulic properties of sands treated with mineral-based grouts through the results of a laboratory test programme consisting of unconfined compression tests (UCS), triaxial bender element tests (BeT) and constant flow permeability tests in triaxial apparatus. An improved apparatus was set up for obtaining high quality, multiple grouted specimens from a single column. Two selected natural sands having different grain sizes were grouted with two mineral-based silica grouts, resulting in different levels of improvement. The behaviour of the sands treated by mineral grouts, in terms of strength, initial stiffness and permeability, was compared with that exhibited by more traditional silicate grouts. The results of this study indicate that sands treated with mineral grouts result in higher strengths, higher initial shear modulus and lower permeability values than the sands treated with the silicate solution. The effect of grout type, effective confining pressure, and sand particle-size on small-strain shear modulus of grouted sand specimens was evaluated. Based on test results, the small strain shear modulus increment from treated to untreated specimens has been correlated with the unconfined compressive strength, obtaining a unique relationship regardless of grout type and grain-size of tested sands.  相似文献   

15.
苏南宁镇地区,震旦系至第四系出露完整,研究程度颇深,诸地层的不同特征,以作为华南各地区地层对比之标准而著称。近几年来,随着大规模勘探工作的进行,宁镇地区地层的物性参数、电性参数和力学参数等各种资料,均在不断完善之中。本文试以该区震旦系至白垩系地层的岩石单轴抗压强度等的系统测试数据,对其有关的岩石力学特性进行粗浅地分析。  相似文献   

16.
文章在弹性力学和库仑-摩尔破裂理论基础上,用数学解析方法剖析三轴不等应力状态,以及三轴全拉、三轴全压和最大最小主应力一拉一压三种情况下,斜截面上剪应力与抗剪阻力之差——"剪切差函数"的极值。进而探讨了剪切破裂趋势面方向与三主应力轴,及岩石(体)内摩擦角φ和内聚力C的关系。给出了不同应力状态下发生剪切破裂面的可能方向。在全压状态下,剪切破裂趋势面与最大主压应力轴夹角γ=±(45°-φ/2),即共轭角χ=±(90°-φ)。在一拉一压状态下,±(45°-φ/2)≤γ≤±45°,具体数值视拉主应力与压主应力比值确定。以上三种不等主应力下的剪切破裂面都是平面,且平行于中间主应力轴。构造拉张力的存在是无可争议事实,通过一拉一压状态下剪切破裂面趋势面分析,给出了构造地质实践中为什么有时剪切面共轭角χ>±(90°-φ),甚至接近90°的理论分析。  相似文献   

17.
18.
填埋场衬垫系统中,土与土工膜界面剪切强度较低,易造成失稳破坏。目前国内外学者主要采用室内试验对土与土工膜界面的宏观剪切特性进行研究,而对界面剪切特性的细观研究较少。为了从细观角度研究土与土工膜界面的剪切特性,本文采用EsyS-particle程序对土工膜与土界面直剪试验进行了离散元数值模拟分析。采用摩擦接触模型模拟砂土;采用黏结模型颗粒模拟土工膜,通过紧密排列土工膜颗粒以模拟土工膜的光滑表面。通过室内拟合试验,选取和校准材料的细观参数。分析结果表明,离散元模型能较好的模拟界面应力-应变关系;剪切带的厚度约为两倍平均土颗粒直径;剪切带中的土颗粒发生较大位移,孔隙比增大,而剪切带之外的土颗粒位移和孔隙比变化较小;随着剪切位移的增加,颗粒间接触力逐渐向左端集中,力链方向由垂直逐渐倾斜。  相似文献   

19.
A new constitutive model for intact rock is presented recognising that rock strength, stiffness and stress–strain behaviour are affected by the size of the rock being subjected to loading. The model is formulated using bounding surface plasticity theory. It is validated against a new and extensive set of unconfined compression and triaxial compression test results for Gosford sandstone. The samples tested had diameters ranging from 19 to 145 mm and length-to-diameter ratios of 2. The model captures the continuous nonlinear stress–strain behaviour from initial loading, through peak strength to large shear strains, including transition from brittle to ductile behaviour. The size dependency was accounted for through a unified size effect law applied to the unconfined compressive strength—a key model input parameter. The unconfined compressive strength increases with sample size before peaking and then decreasing with further increasing sample size. Inside the constitutive model two hardening laws act simultaneously, each driven by plastic shear strains. The elasticity is stress level dependent. Simple linear loading and bounding surfaces are adopted, defined using the Mohr–Coulomb criterion, along with a non-associated flow rule. The model simulates well the stress–strain behaviour of Gosford sandstone at confining pressures ranging from 0 to 30 MPa for the variety of sample sizes considered.  相似文献   

20.
A new constitutive model to describe the shear behavior of rock joints under constant normal stiffness (CNS) and constant normal load (CNL) conditions is proposed. The model was developed using an empirical approach based on the results of a total of 362 direct shear tests on tensile fractured rock joints and replicas of tensile joints and on a new quantitative roughness parameter. This parameter, the active roughness coefficient C r, is derived from the features of the effective roughness mobilized at the contact areas during shearing. The model involves a shear strength criterion and the relations between stresses and displacements in the normal and shear directions, where the effects of the boundary conditions and joint properties are considered by the shape indices C d and C f. The model can be used to predict the shear behavior under CNS as well as CNL conditions. The shear behavior obtained from the experimental results is generally in good agreement with that estimated by the proposed model, and the effects of joint roughness, initial normal stress, and normal stiffness are reasonably reflected in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号