首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper examines the incentives driving expansion of rangeland enclosure. It explores the role of customary authorities in defining and enforcing rights to private use of land and attempts to scrutinize whether informal rules emerge to respond to these needs and even become an incentive to establish private enclosures as well as to delineate the processes and actors involved. Based on household level data and group discussion with customary leaders and state agents, results indicate that there are endogenous and exogenous driving forces for range enclosure and change in land use. Institutional diversity is inherent across the cases studied, where this is closely linked to the nature of benefits from enclosure and the underlying incentives. Though signs of state support for enclosure are evident via assessing the role of lower level state administrators in allocation of land for private grazing, policy support for private land use cannot fully explain the gradual shift in de facto property rights. The role of socio-economic and ecological changes is much more important and has widespread influence, where the influence of the former emerges from the economic changes taking place in the rest of the economy, including the rising livestock price.  相似文献   

2.
This paper analyses structural change in the economy as a key but largely unexplored aspect of global socio-economic and climate change mitigation scenarios. Structural change can actually drive energy and land use as much as economic growth and influence mitigation opportunities and barriers. Conversely, stringent climate policy is bound to induce specific structural and socio-economic transformations that are still insufficiently understood. We introduce Multi-Sectoral macroeconomic Integrated Assessment Models as tools to capture the key drivers of structural change and we conduct a multi-model study to assess main structural effects – changes of the sectoral composition and intensity of trade of global and regional economies – in a baseline and 2°C policy scenario by 2050. First, the range of baseline projections across models, for which we identify the main drivers, illustrates the uncertainty on future economic pathways – in emerging economies especially – and inform on plausible alternative futures with implications for energy use and emissions. Second, in all models, climate policy in the 2°C scenario imposes only a second-order impact on the economic structure at the macro-sectoral level – agriculture, manufacturing and services - compared to changes modelled in the baseline. However, this hides more radical changes for individual industries – within the energy sector especially. The study, which adopts a top-down framing of global structural change, represents a starting point to kick-start a conversation and propose a new research agenda seeking to improve understanding of the structural change effects in socio-economic and mitigation scenarios, and better inform policy assessments.  相似文献   

3.
Long-term studies of land system change can help providing insights into the relative importance of underlying drivers of change. Here, we analyze land system change in Germany for the period 1883–2007 to trace the effect of drastic socio-economic and institutional changes on land system dynamics. Germany is an especially interesting case study due to fundamentally changing economic and institutional conditions: the two World Wars, the separation into East and West Germany, the accession to the European Union, and Germany's reunification. We employed the Human Appropriation of Net Primary Production (HANPP) framework to comprehensively study long-term land system dynamics in the context of these events. HANPP quantifies biomass harvests and land-use-related changes in ecosystem productivity. By comparing these flows to the potential productivity of ecosystems, HANPP allows to consistently assess land cover changes as well as changes in land use intensity. Our results show that biomass harvest steadily increased while productivity losses declined from 1883 to 2007, leading to a decline in HANPP from around 75%–65% of the potential productivity. At the same time, decreasing agricultural areas allowed for forest regrowth. Overall, land system change in Germany was surprisingly gradual, indicating high resilience to the drastic socio-economic and institutional shifts that occurred during the last 125 years. We found strikingly similar land system trajectories in East and West Germany during the time of separation (1945–1989), despite the contrasting institutional settings and economic paradigms. Conversely, the German reunification sparked a fundamental and rapid shift in former East Germany's land system, leading to altered levels of production, land use intensity and land use efficiency. Gradual and continuous land use intensification, a result of industrialization and economic optimization of land use, was the dominant trend throughout the observed period, apparently overruling socio-economic framework conditions and land use policies.  相似文献   

4.
Land use change under conditions of high population pressure: the case of Java   总被引:15,自引:0,他引:15  
A long history of increases in population pressure in Java has caused agricultural land use to expand and intensify. More recent land use changes caused the conversion of prime agricultural land into residential and industrial area. Results of a dynamic, regional-scale, land use change model are presented, defining the spatial distribution of these land use changes. The model is based on multi-scale modelling of the relations between land use and socio-economic and biophysical determinants. Historical validation showed that the model can adequately simulate the pattern of land use change. Future patterns of land use change between 1994 and 2010 are simulated assuming further urbanization. The results suggest that most intensive land use changes will occur in Java's lowland areas.  相似文献   

5.
This paper describes a procedure to use a model interactively to investigate future land use by studying a wide range of scenarios defining climate, technological and socio-economic changes. A full model run of several hours has been replaced by a metamodel version which takes a few seconds, and provides the user with an immediate visual output and with the ability to examine easily which factors have the greatest effect. The Regional Impact Simulator combines a model of agricultural land use choices linked with models of urban growth, flooding risk, water quality and consequences for wildlife to estimate plausible futures of agricultural land on a timescale of 20–50 years. The model examines the East Anglian and North West regions of the United Kingdom at a grid resolution of 5 × 5 km, and for each scenario estimates the most likely cropping and its profitability at each location, and classifies land use as arable, intensive or extensive grassland or abandoned. From a modelling viewpoint the metamodel approach enables iteration. It is thus possible to determine how product prices change so that production meets demand. The results of the study show that in East Anglia cropping remains quite stable over a wide range of scenarios, though grassland is eliminated in scenarios with the 2050s High climate scenario – almost certainly due to the low yield in the drier conditions. In the North West there is a very much greater range of outcomes, though all scenarios suggest a reduction in grassland with the greatest in the 2050s High climate scenario combined with the “Regional Stewardship” (environmental) socio-economic scenario. The effects of the predicted changes in land use on plant species showed suitability for species to vary greatly, particularly between the socio-economic scenarios, due to detrimental effects from increases in nitrogen fertilisation. A complete simulation with the Regional Impact Simulator takes around 15 seconds (computer-dependent), which users who responded felt was adequate or better than adequate. The main areas for future improvement, such as the speed of the system, user interaction and the accuracy and detail of the modelling, are considered.  相似文献   

6.
The use of modern biomass for energy generation has been considered in many studies as a possible measure for reducing or stabilizing global carbon dioxide (CO2) emissions. In this paper we assess the impacts of large-scale global utilization of biomass on regional and grid scale land cover, greenhouse gas emissions, and carbon cycle. We have implemented in the global environmental change model IMAGE the LESS biomass intensive scenario, which was developed for the Second Assessment Report of IPCC. This scenario illustrates the potential for reducing energy related emission by different sets of fuel mixes and a higher energy efficiency. Our analysis especially covers different consequences involved with such modern biomass scenarios. We emphasize influences of CO2 concentrations and climate change on biomass crop yield, land use, competition between food and biomass crops, and the different interregional trade patterns for modern biomass based energy. Our simulations show that the original LESS scenario is rather optimistic on the land requirements for large-scale biomass plantations. Our simulations show that 797 Mha is required while the original LESS scenario is based on 550 Mha. Such expansion of agricultural land will influence deforestation patterns and have significant consequenses for environmental issues, such as biodiversity. Altering modern biomass requirements and the locations where they are grown in the scenario shows that the outcome is sensitive for regional emissions and feedbacks in the C cycle and that competition between food and modern biomass can be significant. We conclude that the cultivation of large quantities of modern biomass is feasible, but that its effectiveness to reduce emissions of greenhouse gases has to be evaluated in combination with many other environmental land use and socio-economic factors.  相似文献   

7.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

8.
Food production in China is a fundamental component of the national economy and driver of agricultural policy. Sustaining and increasing output to meet growing demand faces significant challenges including climate change, increasing population, agricultural land loss and competing demands for water. Recent warming in China is projected to accelerate by climate models with associated changes in precipitation and frequency of extreme events. How changes in cereal production and water availability due to climate change will interact with other socio-economic pressures is poorly understood. By linking crop and water simulation models and two scenarios of climate (derived from the Regional Climate Model PRECIS) and socio-economic change (downscaled from IPCC SRES A2 and B2) we demonstrate that by the 2040s the absolute effects of climate change are relatively modest. The interactive effects of other drivers are negative, leading to decreases in total production of ?18% (A2) and ?9% (B2). Outcomes are highly dependent on climate scenario, socio-economic development pathway and the effects of CO2 fertilization on crop yields which may almost totally offset the decreases in production. We find that water availability plays a significant limiting role on future cereal production, due to the combined effects of higher crop water requirements (due to climate change) and increasing demand for non-agricultural use of water (due to socio-economic development). Without adaptation, per capita cereal production falls in all cases, by up to 40% of the current baseline.By simulating the effects of three adaptation scenarios we show that for these future scenarios China is able to maintain per capita cereal production, given reasonable assumptions about policies on land and water management and progress in agricultural technology. Our results are optimistic because PRECIS simulates much wetter conditions than a multi-model average, the CO2 crop yield response function is highly uncertain and the effects of extreme events on crop growth and water availability are likely to be underestimated.  相似文献   

9.
This study presents the first appraisal of the socio-economic impacts of river floods in the European Union in view of climate and socio-economic changes. The assessment is based on two trajectories: (a) no adaptation, where the current levels of protection are kept constant, and (b) adaptation, where the level of protection is increased to defend against future flooding events. As a basis for our analysis we use an ensemble-based pan-European flood hazard assessment for present and future conditions. Socio-economic impacts are estimated by combining flood inundation maps with information on assets exposure and vulnerability. Ensemble-based results indicate that current expected annual population affected of ca. 200,000 is projected to increase up to 360,000 due to the effects of socio-economic development and climate change. Under the no adaptation trajectory current expected annual damages of €5.5 billion/year are projected to reach €98 billion/year by the 2080s due to the combined effects of socio-economic and climate change. Under the adaptation trajectory the avoided damages (benefits) amount to €53 billion/year by the 2080s. An analysis of the potential costs of adaptation associated with the increase in protection suggests that adaptation could be highly cost-effective. There is, however, a wide range around these central numbers reflecting the variability in projected climate. Analysis at the country level shows high damages, and by association high costs of adaptation, in the United Kingdom, France, Italy, Romania, Hungary and Czech Republic. At the country level, there is an even wider range around these central values, thus, pointing to a need to consider climate uncertainty in formulating practical adaptation strategies.  相似文献   

10.
新郑市水资源现状及对策研究   总被引:3,自引:1,他引:2  
新郑市水资源紧缺、超采、污染现象十分严重。通过对水资源供需平衡的分析,发现用水矛盾更加尖锐。遵循可持续发展的原则,采取充分利用地表水、控制利用地下水、加强利用其他水源以及水源地保护等针对性措施,可解决新郑未来用水矛盾问题,给社会经济发展、人民生活提供保障。  相似文献   

11.
Population growth and loss of arable land   总被引:1,自引:0,他引:1  
I discuss the loss of cropland in developing countries in connection with the ongoing land conversion caused by the growing population and socio-economic development, resulting in an increased demand for housing, industry, infrastructure, etc.Based on assumptions about the required space per capita for other purposes than agriculture, the portion of this area that is removed from presently used cropland, and the quality of the available land reserves, the required demand for land reserves has been calculated.The main conclusions are that during the next three decades (i) the loss of cropland is likely to be within the range 30–60 Mha, (ii) the reserve land utilized will be about 100–200 Mha, and (iii) the reserve land still in use after 30 years, about 50–100 Mha.  相似文献   

12.
Climate variability and change affects individuals and societies. Within agricultural systems, seasonal climate forecasting can increase preparedness and lead to better social, economic and environmental outcomes. However, climate forecasting is not the panacea to all our problems in agriculture. Instead, it is one of many risk management tools that sometimes play an important role in decision-making. Understanding when, where and how to use this tool is a complex and multi-dimensional problem. To do this effectively, we suggest a participatory, cross-disciplinary research approach that brings together institutions (partnerships), disciplines (e.g., climate science, agricultural systems science, rural sociology and many other disciplines) and people (scientist, policy makers and direct beneficiaries) as equal partners to reap the benefits from climate knowledge. Climate science can provide insights into climatic processes, agricultural systems science can translate these insights into management options and rural sociology can help determine the options that are most feasible or desirable from a socio-economic perspective. Any scientific breakthroughs in climate forecasting capabilities are much more likely to have an immediate and positive impact if they are conducted and delivered within such a framework. While knowledge and understanding of the socio-economic circumstances is important and must be taken into account, the general approach of integrated systems science is generic and applicable in developed as well as in developing countries. Examples of decisions aided by simulation output ranges from tactical crop management options, commodity marketing to policy decisions about future land use. We also highlight the need to better understand temporal- and spatial-scale variability and argue that only a probabilistic approach to outcome dissemination should be considered. We demonstrated how knowledge of climatic variability (CV), can lead to better decisions in agriculture, regardless of geographical location and socio-economic conditions.  相似文献   

13.
Providing food and other products to a growing human population while safeguarding natural ecosystems and the provision of their services is a significant scientific, social and political challenge. With food demand likely to double over the next four decades, anthropization is already driving climate change and is the principal force behind species extinction, among other environmental impacts. The sustainable intensification of production on current agricultural lands has been suggested as a key solution to the competition for land between agriculture and natural ecosystems. However, few investigations have shown the extent to which these lands can meet projected demands while considering biophysical constraints. Here we investigate the improved use of existing agricultural lands and present insights into avoiding future competition for land. We focus on Brazil, a country projected to experience the largest increase in agricultural production over the next four decades and the richest nation in terrestrial carbon and biodiversity. Using various models and climatic datasets, we produced the first estimate of the carrying capacity of Brazil's 115 million hectares of cultivated pasturelands. We then investigated if the improved use of cultivated pasturelands would free enough land for the expansion of meat, crops, wood and biofuel, respecting biophysical constraints (i.e., terrain, climate) and including climate change impacts. We found that the current productivity of Brazilian cultivated pasturelands is 32–34% of its potential and that increasing productivity to 49–52% of the potential would suffice to meet demands for meat, crops, wood products and biofuels until at least 2040, without further conversion of natural ecosystems. As a result up to 14.3 Gt CO2 Eq could be mitigated. The fact that the country poised to undergo the largest expansion of agricultural production over the coming decades can do so without further conversion of natural habitats provokes the question whether the same can be true in other regional contexts and, ultimately, at the global scale.  相似文献   

14.
The aim of this paper is to improve understanding of the adaptive capacity of European agriculture to climate change. Extensive data on farm characteristics of individual farms from the Farm Accountancy Data Network (FADN) have been combined with climatic and socio-economic data to analyze the influence of climate and management on crop yields and income and to identify factors that determine adaptive capacity. A multilevel analysis was performed to account for regional differences in the studied relationships. Our results suggest that socio-economic conditions and farm characteristics should be considered when analyzing effects of climate conditions on farm yields and income. Next to climate, input intensity, economic size and the type of land use were identified as important factors influencing spatial variability in crop yields and income. Generally, crop yields and income are increasing with farm size and farm intensity. However, effects differed among crops and high crop yields were not always related to high incomes, suggesting that impacts of climate and management differ by impact variable. As farm characteristics influence climate impacts on crop yields and income, they are good indicators of adaptive capacity at farm level and should be considered in impact assessment models. Different farm types with different management strategies will adapt differently.  相似文献   

15.
Impact of land use changes on surface warming in China   总被引:29,自引:1,他引:28  
Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12℃ (10 yr)- 1 increase for daily mean surface temperature, and the 0.20℃ (10 yr)- 1 and 0.03℃ (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes mayalso play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity.The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.  相似文献   

16.
We explore how smallholder agricultural systems in the Kenyan highlands might intensify and/or diversify in the future under a range of socio-economic scenarios. Data from approximately 3000 households were analyzed and farming systems characterized. Plausible socio-economic scenarios of how Kenya might evolve, and their potential impacts on the agricultural sector, were developed with a range of stakeholders. We study how different types of farming systems might increase or diminish in importance under different scenarios using a land-use model sensitive to prices, opportunity cost of land and labour, and other variables. We then use a household model to determine the types of enterprises in which different types of households might engage under different socio-economic conditions. Trajectories of intensification, diversification, and stagnation for different farming systems are identified. Diversification with cash crops is found to be a key intensification strategy as farm size decreases and labour costs increase. Dairy expansion, while important for some trajectories, is mostly viable when land available is not a constraint, mainly due to the need for planting fodders at the expense of cropland areas. We discuss the results in relation to induced innovation theories of intensification. We outline how the methodology employed could be used for integrating global and regional change assessments with local-level studies on farming options, adaptation to global change, and upscaling of social, environmental and economic impacts of agricultural development investments and interventions.  相似文献   

17.
Further cropland expansion might be unavoidable to satisfy the growing demand for land-based products and ecosystem services. A crucial issue is thus to assess the trade-offs between social and ecological impacts and the benefits of converting additional land to cropland. In the former Soviet Union countries, where the transition from state-command to market-driven economies resulted in widespread agricultural land abandonment, cropland expansion may incur relatively low costs, especially compared with tropical regions.Our objectives were to quantify the drivers, constraints and trade-offs associated with recultivating abandoned cropland to assess the potentially available cropland in European Russia, western Siberia, Ukraine and Kazakhstan—the region where the vast majority of post-Soviet cropland abandonment took place. Using spatial panel regressions, we characterized the socio-economic determinants of cropland abandonment and recultivation. We then used recent maps of changes in cropland to (i) spatially characterize the socio-economic, accessibility and soil constraints associated with the recultivation of abandoned croplands and (ii) investigate the environmental trade-offs regarding carbon stocks and habitat for biodiversity.Less cropland abandonment and more recultivation after 2000 occurred in areas with an increasing rural population and a younger labor force, but also improved yields. Synergies were observed between cropland recultivation and intensification over the 2000s. From 47.3 million hectares (Mha) of cropland abandoned in 2009, we identified only 8.5 (7.1–17.4) Mha of potentially available cropland with low environmental trade-offs and low to moderate socio-economic or accessibility constraints that were located on high-quality soils (Chernozems). These areas represented an annual wheat production potential of ∼14.3 (9.6–19.5) million tons (Mt). Conversely, 8.5 (4.2–12.4) Mha had high carbon or biodiversity trade-offs, of which ∼10% might be attractive for cropland expansion and thus would require protection from recultivation. Agro-environmental, accessibility, and socio-economic constraints suggested that the remaining 30.6 (25.7–30.6) Mha of abandoned croplands were unlikely to provide important contributions to future crop production at current wheat prices but could provide various ecosystem services, and some could support extensive livestock production. Political and institutional support could foster recultivation by supporting investments in agriculture and rural demographic revitalization. Reclaiming potentially available cropland in the study region could provide a notable contribution to global grain production, with relatively low environmental trade-offs compared with tropical frontiers, but is not a panacea to address global issues of food security or reduce land-use pressure on tropical ecosystems.  相似文献   

18.

Land use and land cover maps and their physical-chemical and biological properties are important variables in the numerical modeling of Earth systems. In this context, the main objective of this study is to analyze the improvements resulting from the land use and land cover map update in numerical simulations performed using the Regional Climate Model system version 4 (RegCM4), as well as the seasonal variations of physical parameters used by the Biosphere Atmosphere Transfer Scheme (BATS). In general, the update of the South America 2007 land use and land cover map, used by the BATS, improved the simulation of precipitation by 10 %, increasing the mean temporal correlation coefficient, compared to observed data, from 0.84 to 0.92 (significant at p < 0.05, Student’s t test). Correspondingly, the simulations performed with adjustments in maximum fractional vegetation cover, in visible and shortwave infrared reflectance, and in the leaf area index, showed a good agreement for maximum and minimum temperature, with values closer to observed data. The changes in physical parameters and land use updating in BATS/RegCM4 reduced overestimation of simulated precipitation from 19 to 7 % (significant at p < 0.05, Student’s t test). Regarding evapotranspiration and precipitation, the most significant differences due to land use updating were located (1) in the Amazon deforestation arc; (2) around the Brazil-Bolivia border (in the Brazilian Pantanal wetlands); (3) in the Northeast region of Brazil; (4) in northwestern Paraguay; and (5) in the River Plate Basin, in Argentina. Moreover, the main precipitation differences between sensitivity and control experiments occurred during the rainy months in central-north South America (October to March). These were associated with a displacement in the South Atlantic convergence zone (SACZ) positioning, presenting a spatial pattern of alternated areas with higher and lower precipitation rates. These important differences occur due to the replacement of tropical rainforest for pasture and agriculture and the replacement of agricultural areas for pasture, scrubland, and deciduous forest.

  相似文献   

19.
Abstract

Trends in regional mean sea levels can be substantially different from the global mean trend. Here, we first use tide-gauge data and satellite altimetry measurements to examine trends in mean relative sea level (MRSL) for the coasts of Canada over approximately the past 50–100 years. We then combine model output and satellite observations to provide sea level projections for the twenty-first century. The MRSL trend based on historical tide-gauge data shows large regional variations, from 3?mm?y?1 (higher than the global mean MRSL rise rate of 1.7?mm?y?1 for 1900–2009) along the southeast Atlantic coast, close to or below the global mean along the Pacific and Arctic coasts, to –9?mm?y?1 in Hudson Bay, as indicated by the vertical land motion. The combination of altimeter-measured sea level change with Global Positioning System (GPS) data approximately accounts for tide-gauge measurements at most stations for the 1993–2011 period. The projected MRSL change between 1980 and 1999 and between 2090 and 2099 under a medium-high climate change emission scenario (A2) ranges from ?50?cm in northeastern Canada to 75?cm in southeastern Canada. Along the coast of the Beaufort Sea, the MRSL rise is as high as 70?cm. The MRSL change along the Pacific coast varies from ?15 to 50?cm. The ocean steric and dynamical effects contribute to the rise in MRSL along Canadian coasts and are dominant on the southeast coast. Land-ice (glaciers and ice sheets) melt contributes 10–20?cm to the rise in MRSL, except in northeastern Canada. The effect of the vertical land uplift is large and centred near Hudson Bay, significantly reducing the rise in MRSL. The land-ice melt also causes a decrease in MRSL in northeastern Canada. The projected MRSL change under a high emission scenario (Representative Concentration Pathway 8.5) has a spatial pattern similar to that under A2, with a slightly greater rise in MRSL of 7?cm, on average, and some notable differences at specific sites.  相似文献   

20.
在国家重点研发计划支持下,项目提出了陆表不均一性检测和订正的新方法,解决了渐变型不均一性检测和订正的难题,构建了中国地表太阳辐射、气温、地温、风速和降水等参数均一化站点和格点数据集,修订了关于中国地表风速变化趋势、增温格局及其形成机制的结论。融合多源数据,构建并验证了千米级、流域级或县域级的电厂、人口、生物质能、取水量、氮排放、二氧化碳排放等影响自然系统的关键人文要素历史和未来预估数据集。构建了未来关键人文要素情景,研制了碳中和目标下甲烷和氧化亚氮排放情景和用于驱动全球模式的未来情景,预估了中国碳中和战略的实施对全球变暖的减缓作用,发现中国碳中和对远期和中期全球变暖的减缓作用显著。给出了中国各省份水体氮排放安全阈值及超越时间,阐明了中国粮食产量与氮施肥的关系,提出了在保障粮食安全的前提下减少水体氮排放的有效途径,指出重构城乡养分循环体系是同时保障粮食安全和恢复水质的必要途径。发现全球饱和水汽压差的年际变化与大气二氧化碳浓度上升速率的年际变化显著相关,阐明了饱和水汽压差变化在调控生态系统生产力中的重要角色以及多因素耦合作用在生态系统生产力变化中的复杂影响。建议更全面细致地评估中国各种碳中...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号