首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   

2.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

3.
The glacial sediment succession exposed close to the southern margin of the Late Weichselian Scandinavian Ice Sheet in Poland reveals a mosaic consisting of isolated patches of heavily deformed deposits separated by areas lacking any visible evidence of deformation. In the studied outcrop, the subglacial deforming spots composed of outwash deposits intercalated with till stringers are about 2–10 m wide and 20–60 cm thick. They rest on outwash sediments and are covered by a basal till. Based on structural and textural characteristics, the deforming spots are interpreted as previous R‐channels filled with meltwater deposits. Lack of deformation in outwash sediment immediately beneath the deforming spots and in the intervening areas between the channels suggests that the ice‐bed was frozen and the deformation of the channel infill was facilitated by high pore‐water pressure arising because water drainage into the bed was impeded by permafrost. Channel infill deposits and the till immediately above were coevally deformed to a strain of less than 9. This study documents the possible co‐existence of deforming and stable areas under an ice sheet, generated by spatially varying thermal and hydrological conditions affecting sediment rheology.  相似文献   

4.
A multi-proxy approach involving a study of sediment architecture, grain size, grain roundness and crushing index, petrographic and clay mineral composition, till fabric and till micromorphology was applied to infer processes of till formation and deformation under a Weichselian ice sheet at Kurzetnik, Poland. The succession consists of three superposed till units overlying outwash sediments deformed at the top. The textural characteristics of tills vary little throughout the till thickness, whereas structural appearance is diversified including massive and bedded regions. Indicators of intergranular bed deformation include overturned, attenuated folds, boudinage structures, a sediment-mixing zone, grain crushing, microstructural lineations, grain stacking and high fabric strength. Lodgement proxies are grooved intra-till surfaces, ploughing marks and consistently striated clast surfaces. Basal decoupling by pressurized meltwater is indicated by undisturbed sand stringers, sand-filled meltwater scours under pebbles and partly armoured till pellets. It is suggested that the till experienced multiple transitions between lodgement, deformation and basal decoupling. Cumulative strain was high, but the depth of (time-transgressive) deformation much lower (centimetre range) than the entire till thickness ( ca 2 m) at any point in time, consistent with the deforming bed mosaic model. Throughout most of ice overriding, porewater pressure was high, in the vicinity of glacier floatation pressure indicating that the substratum, consisting of 11 m thick sand, was unable to drain subglacial meltwater sufficiently.  相似文献   

5.
Pleistocene lateral meltwater channels are commonly used as evidence of cold-based or polythermal ice. However, lateral meltwater channel formation has been observed for >40 years along the margins of a rapidly thinning temperate glacier in Glacier Bay, Alaska. Flights of nested linear lateral meltwater channels and in-and-out channels have formed on the sides of emerging nunataks. Nested channels at Burroughs Glacier are up to 200 m long; they are good proxies for the slope of the ice margin along the land surface and are terminated by subglacial chutes. A perched water table associated with precipitation and high ablation rates in the temperate ice causes surface meltwater to flow toward the margin above less permeable ice. The water flows along the margin and erodes lateral meltwater channels until a subglacial chute carries the water into the subglacial water system. Rates of channel formation range from 0 to 8 channels/year. Spacing and rates of channel formation are controlled by the land-surface slope, ablation rate, erodibility of the substrate and stream discharge. Because lateral meltwater channels have been observed forming along a temperate glacier margin, care must be exercised when using the presence of lateral meltwater channels as definitive evidence of cold-based or polythermal ice.  相似文献   

6.
Menzies, J. & Ellwanger, D. 2010: Insights into subglacial processes inferred from the micromorphological analyses of complex diamicton stratigraphy near Illmensee‐Lichtenegg, Höchsten, Germany. Boreas, 10.1111/j.1502‐3885.2010.00194.x. ISSN 0300‐9483. Investigations of a 30‐m‐high section of Pleistocene sediments at Illmensee‐Lichtenegg, Höchsten in Baden‐Württemberg provide detailed information on subglacial conditions beneath the Rhine Glacier outlet of the Alpine ice sheet in southern Germany. The sediment exposure extends from an upper cemented sand and gravel (Deckenschotter) into diamictic units that extend down to weathered Molasse bedrock. The exposure reveals sediments symptomatic of active syndepositional stress/strain processes ongoing beneath the ice sheet. Macrosedimentology reveals diamicton subfacies units and a strong uni‐direction of ice motion based on clast fabric analyses. At the microscale level, thin‐section analyses provide a substantially clearer picture of the dynamics of subglacial sediment deformation and till emplacement. Evidence based on detailed micromorphological analyses reveals microstructural strain and depositional markers that indicate a subglacial environment of ongoing soft bed deformation in which the diamictons can be readily identified as subglacial tills. Within this subglacial environment, distinct changes in pore‐water pressure and sediment rheology can be detected. These changes reveal fluctuating conditions of progressive, non‐pervasive deformation associated with rapid changes in effective stress and shear strain leading to till emplacement. This site, through the application of micromorphology, increases our understanding of localized subglacial conditions and till formation.  相似文献   

7.
The nature of the drainage system beneath ice sheets is crucial to their dynamic behaviour but remains problematic. An experimentally based theory of coupling between groundwater and major channel systems is applied to the esker systems in the area occupied the last ice sheet in Europe, which we regard as a fossil imprint of major longitudinal drainage channels. We conclude that the large-scale distribution and spacing of major eskers is consistent with the theory of groundwater control, in which esker spacing is partly controlled by the transmissivity of the bed.It is concluded that esker patterns reflect the large-scale organisation of the subglacial drainage pattern in which channel development is coupled to groundwater flow and to the ice sheet's dynamic regime. The theory is then used to deduce: basal meltwater recharge rates and their spatial variability from esker spacing in an area in which the ice sheet was actively streaming during its final retreat; patterns of palaeo-groundwater flow and head distribution; and the seasonally varying magnitude of discharge from stream tunnels at the retreating ice sheet margin. Major channel/esker systems appear to have been stable at least over several hundred of years during the retreat of the ice sheet, although major dynamic events are demonstrably associated with major shifts in the hydraulic regime.Modelling suggests: that glaciation can stimulate deep groundwater circulation cells that are spatially linked to channel locations, with groundwater flow predominantly transverse to ice flow; that the circulation pattern has the potential to create large-scale anomalies in groundwater chemistry; and that the spacing of channels will change through the glacial cycle, influencing water pressures in stream tunnels, subglacial hydraulic gradients and effective pressure. If the latter is reduced sufficiently, it could trigger enhanced bed deformation, thus coupling drainage to ice sheet movement. It suggests the possibility of distinctive phases of sediment deformation and drumlin mobilisation during a glacial cycle.  相似文献   

8.
Transverse-to-iceflow ribbed moraine occurs in abundance in the coastal zone of northern Sweden, particularly in areas below the highest shoreline (200–230 m a.s.l.), but occasionally also slightly above. Based on detailed sedimentological and structural investigations of machine-dug sections across five ribbed moraine ridges, it is concluded that these vertically and distally prograding moraine ridges were formed as a result of subglacial folding/thrust stacking and lee-side cavity deposition. The proximal part of the moraines (Proximal Element) was formed by subglacial folding and thrust stacking of sequences of pre-existing sediments, whereas the distal part (Distal Element) was formed by glaciofluvial and gravity-flow deposition in lee-side cavities. The initial thrusting and folding is suggested to be a result of differences in bed rheology at the ice-marginal zone during the early or late melt season, and that generated a compressive zone transverse to ice flow as a result of a more mobile bed up-glacier compared to a less mobile bed down-glacier. It is considered that the lee-side cavities were formed as a result of ice-bed separation on the distal slope of the thrust/fold-created obstruction. The lee-side cavities formed an integral part of a subglacial linked-cavity drainage network regulated in their degree of interconnection, size and shape by fluctuations in basal meltwater pressure/discharge and basal iceflow velocity. The proximal and distal elements of the ribbed moraine ridges are erosively cut and/or draped with a consistently more homogeneous deforming bed till (Draping Element) marking the final phase of ribbed moraine formation considered to be contemporaneous with De Geer moraine formation further down-flow at the receding ice-sheet margin.  相似文献   

9.
At the Dänischer Wohld Peninsula coastal sections (North West Germany), subglacial deformation was found at three scales. At the smallest scale, features typical of deforming bed tills were found, i.e. small boudins, tectonic laminations and low fabric strength till. At an intermediate scale, large lenses of glaciolacustrine sediments were found within subglacially deformed till. At the largest scale, there were large (over 5 m high) subglacial folds. We suggest that these styles of sedimentation/deformation were associated with a series of readvances during overall glacial retreat: subglacial deformation occurred during each advance and glaciolacus trine sedimentation occurred during each retreat. This led to glaciolacustrine sediments and deforming bed tills being folded together during subsequent readvances. Where the rheology was relatively weak, the lacustrine sediments were totally incorporated into the diamicton and lost their previous identity. However, where the glaciolacustrine sediments were relatively strong, they survived. We suggest that this style of deformation is typical of the conditions just upglacier from the ice margin and is associated with a relatively thick deforming layer and a high input of subglacial sediment. We conclude that the evidence found at this site provides further indications that the southern margins of the Fenno-Scandinavian ice sheet were coupled with the glacier bed and underwent deforming bed conditions.  相似文献   

10.
Glacial deposits and landforms, interpreted from the continuous seismic reflection data, have been used to reconstruct the Late Weichselian ice-sheet dynamics and the sedimentary environments in the northeastern Baltic Sea. The bedrock geology and topography played an important role in the glacial dynamics and subglacial meltwater drainage in the area. Drumlins suggest a south-southeasterly flow direction of the last ice sheet on the Ordovician Plateau. Eskers demonstrate that subglacial meltwater flow was focused mostly within bedrock valleys. The eskers have locally been overlain by a thin layer of till. Thick proximal outwash deposits occupy elongated depressions in the substratum, which often occur along the sides of esker ridges. Ice-marginal grounding-line deposit in the southern part of the area has a continuation on the adjacent Island of Saaremaa. Therefore, we assume that its formation took place during Palivere Stadial of the last deglaciation, whereas the moraine bank extending southwestward from the Serve Peninsula is tentatively correlated with the Pandivere Stadial. The wedge-shaped ice-marginal grounding-line deposit was locally fed by subglacial meltwater streams during a standstill or slight readvance of the ice margin. The thickness of the glacier at the grounding-line was estimated to reach approximately 180 m. In the western part of the area, terrace-like morphology of the ice-marginal deposit and series of small retreat moraines 10–20 km north of it suggest stepwise retreat of the ice margin. Therefore, a rather thin and mobile ice stream was probably covering the northeastern Baltic Sea during the last deglaciation.  相似文献   

11.
《Quaternary Science Reviews》2007,26(9-10):1384-1397
To investigate the drainage conditions that might be expected to develop beneath soft-bedded ice sheets, we modeled the subglacial hydrology of the James Lobe of the Laurentide Ice Sheet from Hudson Bay to the Missouri River. Simulations suggest the James Lobe had little effect on regional groundwater flow because the poorly conductive Upper-Cretaceous shale that occupies the upper layer of the bedrock would have functioned as a regional aquitard. This implies that general northward groundwater flow out of the Williston Basin has likely persisted throughout the Quaternary. Moreover, the simulations indicate that the regional aquifer system could not have drained even the minimum amount of basal meltwater that might have been produced from at the glacier bed. Therefore, excess drainage must have occurred by some sort of channelized drainage network at the ice–till interface. Using a regional groundwater model to determine the hydraulic conductivity for an equivalent porous medium in a 1-m thick zone between the ice and underlying sediment, and assuming conduit dimensions from previous theoretical work, we use a theoretical karst aquifer analog as a heuristic approach to estimate the spacing of subglacial conduits that would have been required at the ice–till interface to evacuate the minimum water flux. Results suggest that for conduits assumed to be on the order of a tenth of a meter deep and up to a meter wide, inter-conduit spacing must be on the order of tens–hundreds of meters apart to maintain basal water pressures below the ice overburden pressure while evacuating the hypothesized minimum meltwater flux.  相似文献   

12.
A typical stratigraphy below a streamlined till plain in Northumberland, England, consists of cross-cutting lodgement till units, within and between which occur repeated shoestring interbeds of ‘cut and fill’ channels. Till units have erosional lower contacts; in certain cases marked changes in erratic content and local ice flow direction are evident from one till unit to another. These lodgement till complexes have hitherto been described by ‘tripartite’ schemes of lower grey till (s) and upper reddened till (s) identified with respect to ‘middle’ fluvial horizons; regional correlation proceeding on the basis of matching ‘middle’ horizons, with the whole sequence commonly interpreted as evidence for multiple glaciation. Data indicates, by way of contrast, that these lodgement till complexes were deposited during a single phase of subglacial deposition. Till deposition was not continuous but was interrupted by erosional episodes. Changes in the mix of bedrock lithologies transported by the glacier down a single flow line or by lateral displacement of basal ice flow units within the glacier result in till units of different facies to be emplaced when deposition recommences, a process referred to as ‘unconformable facies superimposition’. Subglacial meltwater flow was also a characteristic of the glacier bed; channeled glaciofluvial sediment bodies are found as ribbon-like inclusions in the till and appear to have been deposited rapidly. These so-called ‘middle’ fluvial horizons occur repeatedly in section, their lateral extent at any given exposure being dependent upon the orientation of the exposure with respect to former ice flow direction. These lenses act as internal drainage blankets and have accelerated postglacial soil formation in the drier climate of eastern Britain accounting for the reddened colour of upper till(s). It is suggested that this model of subglacial deposition can be employed in other areas of northern England characterized by subglacial (lodgement till plain) terrains.  相似文献   

13.
The Northern Till is a thick (>65 m) deformation till underlying some 7500 km2 of Southern Ontario, Canada including the Peterborough Drumlin Field. It was deposited below the Lake Ontario ice stream of the Laurentide Ice Sheet. The till rests on glaciotectonized aquifer sediments and consists of multiple beds of till up to 6 m thick. These are separated by boulder lags, sometimes in the form of striated pavements, with thin (<30 cm) interbeds of poorly sorted waterlaid sand. The composite till stratigraphy indicates ‘punctuated aggradation’ where the subglacial bed was built up incrementally by the repeated ‘immobilization’ of deforming overpressured till layers. Boulders and sands indicate pauses in subglacial aggradation marked by sluggish sheet flows of water that reworked the top of the underlying till. Interbeds are laterally extensive and correlated using downhole electrical conductivity, core recovery and natural gamma data. A 3-D finite element model (FEFLOW) using data from 200 cored and geophysically logged boreholes, and a large digital water well dataset of 3400 individual records shows that the till functions as a ‘leaky aquitard’ as a consequence of water flow through interbeds. It is proposed that interbeds played a similar role in the subglacial hydraulic system below the Laurentide Ice Sheet by allowing drainage of excess porewater pressures in deforming sediment and promoting deposition of till. This is in agreement with theoretical studies of deforming bed dynamics and observations at modern glaciers where porewater in the deforming layer is discharged into underlying aquifers. In this way, the presence of interbeds may be fundamental in retarding downglacier transport of deforming bed material thereby promoting the build-up of thick subglacial till successions.  相似文献   

14.
Nick Eyles   《Sedimentary Geology》2006,190(1-4):257-268
Water plays a dominant role in many glacial processes and the erosional, depositional and climatic significance of meltwaters and associated fluvioglacial processes cannot be overemphasized. At its maximum extent c. 20,000 years ago, the volume of the Laurentide ice sheet was 33 × 106 km3 (about the same as the volume of all ice present today on planet Earth). The bulk of this was released as water in little more than 10,000 years. Pulses of meltwater flowing to the Atlantic Ocean from large ice dammed lakes altered thermohaline circulation of the world's oceans and global climate. One such discharge event via Hudson Bay at 8200 years BP released 160,000 km3 of water in 12 months. Global sea levels recovered from glacial maximum low stands reached at about 20,000 years ago at an average rate of 15 m per thousand years but estimates of shorter term rates suggest as much as 20 m sea level rise in 1000 years and for short periods, rates as high as 4 m per hundred years. Meltwaters played a key role in lubricating ice sheet motion (and thus areal abrasion) across the inner portions of the ice sheet where it slid over rigid crystalline bedrock of the Canadian Shield. The recharge of meltwater into the ice sheets bed was instrumental in generating poorly sorted diamict sediments (till) by sliding-induced shearing and deformation of overpressured sediment and soft rock. The transformation of overpressured till into hyperconcentrated slurries in subglacial channels may have generated a highly effective erosional tool for selective overdeepening and sculpting of bedrock substrates. Some workers credit catastrophic subglacial ‘megafloods’ with the formation of drumlins and flutes on till surfaces. Subglacial melt river systems were instrumental in reworking large volumes of glaciclastic sediment to marine basins; it has been estimated that less than 6% of the total volume of glaciclastic sediment produced during the Pleistocene remains on land. Fluvioglacial and glaciolacustrine sediments and landforms dominate large tracts of the ‘glacial’ landscape in North America. The recharge of subglacial meltwater into underlying bedrock and sediment aquifers created transient reversals in the long-term equilibrium flow directions of basinal fluids. With regard to pre-Pleistocene glacial record, meltwaters moved enormous volumes of terrestrial ‘glaciclastic’ sediment to marine basins and thus played a key role in preserving a record of glaciation, a record otherwise almost entirely lost on land.  相似文献   

15.
At some time close to the Last Glacial Maximum (LGM) high-energy, subglacial, Laurentide, meltwater flows eroded a series of discontinuous tunnel channels into the northeastern flanks of the Porcupine Hills and adjacent parts of the high plains near Nanton, Stavely and Claresholm. Discrete channel segments, kilometers long, up to about 1 km wide, and 100 m deep, were carved into Paleocene sandstone and shale of the Porcupine Hills Formation. Floors of Pine, Boneyard, and Crocodile channels all occur at elevations between 1050 and 1175 m a.s.l., and share the characteristic of strongly convex-up long profiles. Intrachannel drainage divides on each channel floor are tens of meters above the water entry and exit points. Formative flows, therefore, must have been pressurized in the subglacial Nye-channels. Prominent scour-holes at some major bends in the channels now host ephemeral ponds or lakes. During the channel erosion, the overlying Laurentide ice surface was probably close to its local LGM maximum elevation of ca. 1400–1500 m a.s.l. Misfit modern streams now drain in opposite directions within the tunnel channels, and there are only minor, local, distal accumulations of sediment derived from the tunnel channel erosion.  相似文献   

16.
Jasper Knight   《Sedimentary Geology》2003,160(4):291-307
Temporal changes in meltwater abundance, distribution and characteristics (controlling subglacial processes and ice sheet dynamics) can be inferred from subglacial sediment successions. Field evidence for changes in subglacial meltwater characteristics over time is presented from two sites (Doonan, Drummee) near a former late Weichselian (Devensian) ice centre in the north of Ireland. On a macroscale, both sites investigated show subglacial diamicton overlying glacially planated bedrock platforms. In more detail, primary sedimentary structures and facies variability show a complex relationship between depositional processes and meltwater characteristics at the ice/bed interface (IBI). Sedimentary evidence suggests sediment transport and deposition took place by low-viscosity subglacial slurries (mobile sediment–meltwater admixtures), which are part of a continuum between the processes of subglacial sediment deformation and subglacial meltwater flooding. Subtle changes in meltwater abundance and distribution at the IBI controlled slurry rheology, mechanisms of particle support and detailed sediment depositional processes.  相似文献   

17.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

18.
《Sedimentary Geology》2007,193(1-4):21-31
Three basal-till facies from the Lower Vistula valley were examined. The lowest facies, a sandy diamicton with characteristic sand inclusions forming detached and attenuated folds, is overlain by a bedded till characterized by alternating diamictons and sorted sediment layers. The uppermost till facies is a homogeneous diamicton.The three till facies must have been formed by complex subglacial sedimentary processes during the first Late Weichselian ice advance. The lowest till facies is interpreted as a deformation till, and accumulated during the initial stage of the ice advance. The middle facies represents a stagnation phase during the initial ice advance, and was deposited during recurrent periods of subglacial melt-out followed by meltwater sedimentation. The upper till facies was deposited by direct subglacial melt-out during a stage of stagnant ice.It is suggested that bed deformation and temporarily enhanced basal sliding have been caused by ice streaming at the time of the ice-sheet advance and just before its stagnation.  相似文献   

19.
The foreground of Elisebreen, a retreating valley glacier in West Svalbard, exhibits a well-preserved assemblage of subglacial landforms including ice-flow parallel ridges (flutings), ice-flow oblique ridges (crevasse-fill features), and meandering ridges (infill of basal meltwater conduits). Other landforms are thrust-block moraine, hummocky terrain, and drumlinoid hills. We argue in agreement with geomorphological models that this landform assemblage was generated by ice-flow instability, possibly a surge, which took place in the past when the ice was thicker and the bed warmer. The surge likely occurred due to elevated pore-water pressure in a thin layer of thawed and water-saturated till that separated glacier ice from a frozen substratum. Termination may have been caused by a combination of water drainage and loss of lubricating sediment. Sedimentological investigations indicate that key landforms may be formed by weak till oozing into basal cavities and crevasses, opening in response to accelerated ice flow, and into water conduits abandoned during rearrangement of the basal water system. Today, Elisebreen may no longer have surge potential due to its diminished size. The ability to identify ice-flow instability from geomorphological criteria is important in deglaciated terrain as well as in regions where ice dynamics are adapting to climate change.  相似文献   

20.
Hilda Glacier, a small cirque glacier in the Canadian Rocky Mountains, yields two principal types of sediment: ablation till, deficient in fine material and produced by rockfalls and avalanches falling on to the glacier surface, and basal lodgement till, rich in fines and formed mainly by subglacial erosion. Recent recession from its Neoglacial maximum has exposed large areas of basal till with thin veneers of ablation till which, when combined with present subglacial and supraglacial debris, provide abundant material for erosion and transport by the mcltwatcr stream. Sediment transport measurements over two summers (1977–1978) showed that bed load and suspended load occur in approximately equal proportions and that dissolved loads are minor. Local source variations, especially bank slumps, are a major cause of scatter in sediment rating curves. Suspended-sediment concentrations are greater early in the melt season due to availability of loose sediment produced by freezing and thawing. Other contributors to scatter in suspended-sediment rating curves include rain showers and diurnal hysteretic effects. Although the distinction between bed load and suspended load is never sharp, available data suggest that the sand/ gravel grain-size boundary (-1ø) approximates the suspendcd-load/bed-load division for characteristic Hilda flows transporting gravel. This approximation, combined with till grain-size analyses, suspended-sediment measurements, and spatial distributions of till types, leads to the following computations of fluvial sediment sources: for suspended load - 6% supraglacial, 47% subglacial, 47% channel banks; for bed load - 46% supraglacial, 27% each subglacial and channel banks. Supraglacial debris provides only about one-fourth of all fluvial sediment, but nearly half of the bed load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号