首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
For 390 ten-minute samples of turbulent flux, made with a trivane above a lake, the vertical alignment is determined within 0.1 ° through azimuth-dependent averaging. One degree of instrumental misalignment is found to produce an average tilt error of 9 ± 4% for momentum flux, and 4 ± 2% for heat flux. The tilt error in the vertical momentum flux depends mainly ons u/u*, and cannot be much diminished with impunity by high-pass pre-filtering of the turbulence signals. The effects of rain on trivane measurements of vertical velocity are shown to be negligible at high wind speeds, and adaptable to correction in any case.The normalized vertical velocity variance,s w/u*, appears to be proportional to the square root ofz/L for unstable stratification. For a wind speed range of 2 to 15 m s–1, the eddy correlation stresses measured at 4- and 8-m heights can be reasonably well estimated by using a constant drag coefficientC d=1.3 X 10-3, while cup anemometer profile measurements give an overestimate of eddy stress at high wind speeds. A good stress estimate is also obtained from the elevation variance; it is suggested that trivane measurement of this variance might be made from a mobile platform, e.g., a moderately stabilized spar buoy.  相似文献   

2.
The vertical turbulent fluxes have been determined during the Atlantic Trade Wind Experiment (ATEX) both by direct and profile methods. The drag coefficient obtained from direct measurements was c D = 1.39 × 10–3. A distortion of the wind profile due to wave action could be demonstrated, this produced an increased drag coefficient estimated by the profile method. The dissipation technique using the downwind spectrum gave a lower drag coefficient of 1.26 × 10–3, probably due to non-isotropic conditions (the ratio of vertical to downwind spectrum at high frequencies scattered considerably with an average of 1 instead of 4/3).From direct measurements, the sensible heat flux showed a poor correlation with the bulk parameter product U, contrary to the heat flux obtained from profiles. It is shown that this is due to the higher frequency part of the cospectrum, say above 0.25 Hz, which contributes more than 50 % of the total flux. Determination of the heat flux from temperature fluctuations by the dissipation method would be in agreement with the direct determination only if the corresponding Kolmogoroff constant were 2.1 instead of 0.8.For the vertical flux of water vapor obtained from profiles, the bulk transfer coefficient was 1.28 × 10–3.This work was supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogramm Meeresforschung and later the Sonderforschungsbereich Meeresforschung Hamburg.  相似文献   

3.
The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D’Asaro, E.A., 1995. J. Fluid Mech. 289, 115–128; Winters, K.B., D’Asaro, E.A., 1996. J. Fluid Mech. 317, 179–193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265–301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41–63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999].A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow.The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the ratio of eddy diffusivity to molecular diffusivity, shows that the Cox number varies within the interval [9, 262], which corresponds to the range of vertical eddy diffusivity measured in the interior of the ocean. The Cox number is found to depend on the turbulent Froude number squared.We show eventually that mixing results in a weak distortion of the initial density profile and we relate this result to observations made at small scale in the ocean.Comparisons between the analysis of the two-dimensional and high resolution (2563) three-dimensional direct numerical simulations of the primary wave were also conducted. We show that the energetics and the amount of mixing are very close when the primary wave is of small amplitude. This results from the fact that, for a statically stable wave, the dynamics of the initially two-dimensional primary wave remains mostly two-dimensional even after the onset of wavebreaking.  相似文献   

4.
Land Surface Processes Experiment (LASPEX) was conducted over semi-arid region of western India in 1997. As a part of this program, wind and temperature observations were taken using slow as well as fast response sensors over a semi-arid station Anand (22°35′N, 72°55′E) situated in Gujarat state of India. Turbulent parameters such as drag coefficient and sensible heat flux were estimated using eddy correlation method and aerodynamic roughness length was estimated using wind profiles. The analysis has been carried out for the data representing summer, monsoon and winter seasons. It was found that the wind speed does not exceed 5 ms− 1 during the observational period considered in this study. Relationship of aerodynamic drag coefficient and roughness length with wind speed and stability has been investigated. Aerodynamic roughness length was greater in the stable conditions when the wind speed was low and it reduced drastically during convective conditions. The resulting values of aerodynamic roughness length and drag coefficient for the monsoon period agree well with values reported in literature over Indian subcontinent for homogeneous grass covered surfaces.  相似文献   

5.
The deposition fluxes of inorganic compounds dissolved in fog and rain were quantified for two different ecosystems in Europe. The fogwater deposition fluxes were measured by employing the eddy covariance method. The site in Switzerland that lies within an agricultural area surrounded by the Jura mountains and the Alps is often exposed to radiation fog. At the German mountain forest ecosystem, on the other hand, advection fog occurs most frequently. At the Swiss site, fogwater deposition fluxes of the dominant components SO42− (0.027 mg S m−2 day−1), NO3 (0.030 mg N m−2 day−1) and NH4+ (0.060 mg N m−2 day−1) were estimated to be <5% of the measured wet deposition (0.85, 0.70 and 1.34 mg m−2 day−1, respectively). The corresponding fluxes at the forest site (0.62, 0.82 and 1.16 mg m−2 day−1, respectively) were of the same order of magnitude as wet deposition (1.04, 1.01 and 1.36 mg m−2 day−1), illustrating the importance of fog (or occult) deposition. Trajectory analyses at the forest site indicate significantly higher fogwater concentrations of all major ions if air originated from the east (i.e. the Czech Republic), which is in close agreement with earlier studies.  相似文献   

6.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   

7.
Sea-salt optical properties and GCM forcing at solar wavelengths   总被引:1,自引:0,他引:1  
The single-scattering optical properties of sea-salt solution particles are parameterised as functions of relative humidity for various dry size distributions at solar wavelengths. The accuracy of the parameterisation is typically within 10% as compared to exact Mie calculations. In addition to the optical properties, the growth of the droplet mass ratio and the effective radius of the size distribution are also parameterised in terms of the relative humidity. Two-band models are presented: a four-band model for use in GCMs for climate studies and a 23-band model for use in higher spectral resolution models. The parameterisation is implemented in the Canadian General Circulation Model GCMIII, and an estimate of the first-order globally and yearly averaged solar direct radiative forcing due to sea-salt is estimated to be −0.15 W/m2 (cooling). The northern hemisphere forcing is estimated to be −0.11 W/m2 and the southern hemisphere is −0.19 W/m2. The monthly trends in the forcing for the two hemispheres are presented and discussed. The sensitivity of the forcing to the treatment of the growth of aerosols in the hysteresis region, where aerosol particles are either dry or supersaturated, is investigated along with other sensitivities.  相似文献   

8.
The momentum flux data obtained by the gust probe aboard the NOAA DC-6 aircraft during GATE are analyzed. Vertical profiles are obtained for Phases I and III and correlated with vertical wind velocity profiles using the geostrophic departure method. Reasonable agreement is obtained using the horizontal equations of motion with negligible advective acceleration. The vertical profiles of momentum flux and wind speed variance compare well with the numerical model results of Deardorff (1972) and Wyngaard et al. (1974). Vertical distributions of power spectra for vertical eddy motion and cospectra corresponding to the momentum flux components are obtained along with the height variation of the dominant length scales of vertical eddy motion and the dissipation rate of turbulence kinetic energy. When normalized by mixed-layer similarity, these results agree well with previous determinations in the boundary layer over tropical oceans and over land.  相似文献   

9.
Nonlinear two-dimensional calculations have been carried out to estimate the temperature and velocity changes induced in air flowing over an urban heat island. Of particular interest is the destruction of a nocturnal inversion and the crossover to cooler temperatures aloft. Initial calculations for constant eddy diffusivity and constant rural velocity show good agreement with a linearized solution. Qualitatively similar results are obtained when appropriate vertical profiles are introduced for the eddy diffusivity and rural velocity. In these cases heating produces sufficient lifting of the air in the stable atmosphere that noticeable temperature crossover occurs. Additional calculations for the case in which the eddy diffusivity increases over the heat island yield greatly reduced vertical velocities; however, even greater temperature crossover can occur from the interaction of the diffusivity changes and the nocturnal inversion.  相似文献   

10.
A model was developed to predict the modification with fetch in offshore flow of mixing ratio, air–water exchange flux, and near-surface vertical gradients in mixing ratio of a scalar due to air–water exchange. The model was developed for planning and interpretation of air–water exchange flux measurements in the coastal zone. The Lagrangian model applies a mass balance over the internal boundary layer (IBL) using the integral depth scale approach, previously applied to development of the nocturnal boundary layer overland. Surface fluxes and vertical profiles in the surface layer were calculated using the NOAA COARE bulk algorithm and gas transfer model (e.g., Blomquist et al. 2006, Geophys Res Lett 33:1–4). IBL height was assumed proportional to the square root of fetch, and estimates of the IBL growth rate coefficient, α, were obtained by three methods: (1) calibration of the model to a large dataset of air temperature and humidity modification over Lake Ontario in 1973, (2) atmospheric soundings from the 2004 New England Air Quality Study and (3) solution of a simplified diffusion equation and an estimate of eddy diffusivity from Monin–Obukhov similarity theory (MOST). Reasonable agreement was obtained between the calibrated and MOST values of α for stable, neutral, and unstable conditions, and estimates of α agreed with previously published parametrizations that were valid for the stable IBL only. The parametrization of α provides estimates of IBL height, and the model estimates modification of scalar mixing ratio, fluxes, and near-surface gradients, under conditions of coastal offshore flow (0–50 km) over a wide range in stability.  相似文献   

11.
The aim of this study was to close the carbon budget and reduce uncertainty in annual C balances for Scots pine (Pinus sylvestris) forests in The Netherlands. This was done by comparing estimates of the Net Ecosystem Exchange (NEE) as assessed by two different methods. The inventory based carbon budgeting method estimated the average NEE for 1997 – 2001 at 202 g C m–2 yr–1 (a sink) with a confidence interval of 138 – 271 g C m–2 yr–1. The estimate obtained by the eddy covariance method was 295 g C m–2 yr–1 on average for the same period, with a confidence interval of 224 – 366 g C m–2 yr–1. Uncertainties in the eddy covariance method were mostly related to gap filling of the data. Main uncertainties in the inventory-based method are related to the soil and the root compartment. The difference in NEE as obtained by two independent methods indicates that it is not straightforward to design a sound National System for monitoring and reporting of the total land area and for accounting of changes in forest area under the Kyoto Protocol, and that more effort is required in this field.  相似文献   

12.
Three simple methods to estimate global solar radiation are proposed in addition to (Solar Energy 63 (1998) 147). All were tested seasonally and at different sky conditions at seven locations in Egypt. The methods use ground-based measurements of maximum and minimum temperature, daily mean of cloud cover and extraterrestrial global radiation. Average of root mean square differences (RMSD) for a comparison between observed and estimated global radiation for all locations tested was around 10% for the new methods and 13% for Supit–Van Kappel method. The coefficient of determination R2 is higher for the new methods for all tested locations. Better results were obtained when applying the new methods to different seasons. The differences in root mean square error (RMSE) between the new methods and Ångstrom–Prescott method that is based on sunshine duration data were less than 1.0 MJ m−2 day−1 at all sites. On the whole, the performance statistics demonstrate that the new methods are better when compared by Ångstrom–Prescott method.  相似文献   

13.
The aerosol optical depth of the atmospheric boundary layer was determined both from direct solar irradiance measurements and from vertical extrapolation of ground-based nephelometry, during a period with cloudless skies and high aerosol mass loadings in the Netherlands. The vertical profile of the aerosol was obtained from lidar measurements. From humidity controlled nephelometry at the ground and humidity profiles from soundings, the scattering aerosol extinction as a function of height was assessed. Integration of the extinction over the aerosol layer gave the aerosol optical depth of the atmospheric boundary layer. This optical depth at the narrow band of the nephelometer was translated to a spectrally integrated value, assuming an Angstrom wavelength exponent of 1.5, a typical value for The Netherlands.It was found that scattering by the boundary layer aerosol contributed on average 80% to the total atmospheric aerosol optical depth. The uncertainty in this value is estimated to be of the order of 13%. Ammonium nitrate dominated the light scattering. This is an anthropogenic aerosol component.The radiative forcing caused by the light scattering of the anthropogenic aerosol was calculated assuming an upward scattered fraction of 0.3. An average value of − 12 W m −2 was found (with an estimated uncertainty of 20%). This corresponds to an absolute increase in the planetary albedo of 0.03, which is equivalent to a 15% increase in the local planetary albedo of 0.2.  相似文献   

14.
A laboratory study of scalar diffusion in the convective boundary layer has found results that are consistent with a 1999 large-eddy simulation (LES) study by Jonker, Duynkerke and Cuijpers. For bottom-up and top-down scalars (introduced as ‘infinite’ area sources of passive tracer at the surface and inversion, respectively) the dominant length scale was found to be much larger than the length scale for density fluctuations, the latter being equal to the boundary-layer depth h. The variance of the normalized passive scalar grew continuously with time and its magnitude was about 3–5 times larger for the top-down case than for the bottom-up case. The vertical profiles of the normalized passive scalar variance were found to be approximately constant through the convective boundary layer (CBL) with a value of about 3–8c*2 for bottom-up and 10–50c*2 for top-down diffusion. Finally, there was some evidence of a minimum in the variance and dominant length scale for scalar flux ratios (top-down to bottom-up flux) close to −0.5. All these convection tank results confirm the LES results and support the hypothesis that there is a distinct difference in behaviour between the dynamic and passive variables in the CBL.  相似文献   

15.
The physical and chemical properties of aerosol particles were investigated at Plan d'Aups, one of the ESCOMPTE sites located in the St. Baume mountain area (700 m a.s.l.), 50 km east of Marseilles (France). The site is ideally located for assessing the vertical and horizontal extent of the pollution plume from the Marseilles–Berre area.Our study showed that polluted air masses from the Marseilles–Berre area are advected to Plan d'Aups in the early afternoon. Average daily concentration of particles reaches up to 40 μg m−3 while 1-h average particle number concentration is greater than 30,000 cm−3. Most of the particle mass is composed of SO42− and organic carbon (OC). The chemical properties of the particles revealed that an additional source, possibly from the industrial area of Gardanne, contributes to the aerosol mass. This last source is characterised by significant emissions of elements, such as Zn, V, Al and Si.In addition to transport, we found that gas-to-particle conversion takes place at the interface between the free troposphere and the boundary layer. We estimated that on average, 30% of the particle number is accounted for by direct nucleation. This is potentially a major aerosol source to the free troposphere.  相似文献   

16.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

17.
Corona ion discharge is responsible for a flux of small ions emanating from an overhead power line capable of modifying the ambient electrical environment. The ensuing space charge can be detected as a change in magnitude of the earth's natural DC electric field at ground level. DC field mill meters were used to measure the vertical component of electric fields upwind and downwind of 132 and 400 kV power lines. Evidence of space charge blowing downwind of power lines was observed in 21 out of 22 cases. Time series measurements recorded in the downwind direction were highly variable with fields of higher magnitude compared to those recorded upwind. Model DC field profiles were used to estimate a lower limit to the space charge density at body height arising from power lines. The average lower limit was 3000 cm−3 excess unipolar charges. The result suggests that between 10% and 60% of outdoor aerosols gain excess charge by the attachment of corona ions. Downwind of a 400 kV line in Somerset that was prone to excessive corona discharge, the estimated mean lower limit excess unipolar space charge density was 6000 cm−3, suggesting that up to 100% of aerosols gain excess charge by the attachment of corona ions. Investigations into the time variation of DC electric fields around motorways and the natural diurnal variation of the earth's DC field were also undertaken and compared to the power line data. The results show that the power line time series are clearly distinguishable from typical examples of both types of field variation, demonstrating the relatively highly charged atmospheres that generally exist around high-voltage power lines. The results are of potential public health concern, because they suggest a degree of aerosol charging that may result in a non-trivial increase in lung deposition of inhaled pollutant aerosols.  相似文献   

18.
Turbulent fluxes obtained using the conventional eddy covariance approach result in erratic results with large time fluctuations in extremely stable conditions. This can limit efforts to estimate components of the nocturnal energy budget and respiratory CO2 fluxes. Well-organized fluxes that show a clear dependence on turbulent intensity were obtained when multiresolution decomposition was used to estimate turbulent exchanges. CO2, heat and water vapour fluxes were observed at a site in the eastern Amazon basin that had been cleared for agricultural purposes. Temporal scales of the carbon transfer were determined and shown to be similar to those of latent heat, but as much as three times larger than those of sensible heat. CO2 eddy diffusivities at the temporal scales on which most of the vertical CO2 exchange occurs are shown to be 50 times larger than the eddy diffusivity for heat. A process associated with the vertical scale of the scalar accumulation layer is suggested to explain these different scales and turbulent diffusivities of carbon and sensible heat transfer. For an appreciable range of turbulence intensities, the observed vertical turbulent carbon exchange is insufficient to account for the locally respired CO2 estimated independently. Evidence that shallow drainage currents may account for this is given.  相似文献   

19.
The flux–gradient relationships in the unstable roughness sublayer (RSL) over an open canopy of black spruce forest were examined using long-term observations from an instrumented tower. The observed gradients normalised with the surface fluxes and height above the zero-plane displacement showed differences from a universal function established in the surface layer. The magnitude of differences was not constant throughout the year even at the same observation height. Also the magnitude of the differences was different for each scalar, and scalar similarity in the context of the flux–gradient relationship did not always hold. The variation of the differences was explained by the relative contribution of overstorey vegetation to the total flux from the entire ecosystem. This suggests that a mismatch of the vertical source/sink distributions between scalars leads to a different strength of the near-field dispersion effect for each scalar, and this resulted in inequality of eddy diffusivity among scalars in the RSL. An empirical method that predicts the magnitude of differences is proposed. With this method, it is possible to estimate the eddy diffusivity of scalars provided that the relative contribution of overstorey vegetation to the total flux from the ecosystem is known. Also this method can be used to estimate the eddy diffusivity for scalars whose primary sources are at ground level, such as methane and nitrous oxide.  相似文献   

20.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号