首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

In many of the world’s river basins, the water resources are over-allocated and/or highly modified, access to good quality water is limited or competitive and aquatic ecosystems are degraded. The decline in aquatic ecosystems can impact on human well-being by reducing the ecosystem services provided by healthy rivers, wetlands and floodplains. Basin water resources management requires the determination of water allocation among competing stakeholders including the environment, social needs and economic development. Traditionally, this determination occurred on a volumetric basis to meet basin productivity goals. However, it is difficult to address environmental goals in such a framework, because environmental condition is rarely considered in productivity goals, and short-term variations in river flow may be the most important driver of aquatic ecosystem health. Manipulation of flows to achieve desired outcomes for public supply, food and energy has been implemented for many years. More recently, manipulating flows to achieve ecological outcomes has been proposed. However, the complexity of determining the required flow regimes and the interdependencies between stakeholder outcomes has restricted the implementation of environmental flows as a core component of Integrated Water Resources Management (IWRM). We demonstrate through case studies of the Rhône and Thames river basins in Europe, the Colorado River basin in North America and the Murray-Darling basin in Australia the limitations of traditional environmental flow strategies in integrated water resources management. An alternative ecosystem approach can provide a framework for implementation of environmental flows in basin water resources management, as demonstrated by management of the Pangani River basin in Africa. An ecosystem approach in IWRM leads to management for agreed triple-bottom-line outcomes, rather than productivity or ecological outcomes alone. We recommend that environmental flow management should take on the principles of an ecosystem approach and form an integral part of IWRM.

Editor D. Koutsoyiannis

Citation Overton, I.C., Smith, D.M., Dalton J., Barchiesi S., Acreman M.C., Stromberg, J.C., and Kirby, J.M., 2014. Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrological Sciences Journal, 59 (3–4), 860–877.  相似文献   

2.
The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage, water supply and eco-environment protection is broken up, these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained. In the light of the conflict of water drainage, water supply and eco-environment protection in a typical sector in Jiaozuo coal mine, a case study puts forward an optimum combination scheme, in which a maximum economic benefit objective is constrained by multiple factors. The scheme provides a very important scientific base for finding a sustainable development strategy.  相似文献   

3.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

4.
Abstract

Abstract Assessment of the impacts of mining and reclamation, and design of management practices to reduce chemical loads in stream channels, require knowledge of changing hydrological conditions and of changing sources and rates of release of chemicals into stream waters. One simple method for evaluating these impacts is to combine flow duration curves with regression relations between surface-water chemical concentrations (C) and instantaneous discharge (Q). However, little is known regarding the drainage basin-scale effects of mining and reclaiming drainage basins on regression relations. These effects were assessed on three small experimental drainage basins in Ohio subjected to surface mining for coal. Comparisons were made between regression parameter changes for natural/undisturbed conditions, land disturbances caused by mining and reclamation, incomplete reclamation, and the final condition of the reclaimed drainage basins. Regression analysis used a total of 5047 laboratory analyses of 36 constituents. Of 429 regressions, 153 (36%) were statistically significant. Knowledge of changes in regression parameters is important because regressions supply information on the rate of release and supply of chemical constituents in mined and reclaimed drainage basins. Duration curves of concentration and loads can be constructed using these regressions with flow–duration curves to give estimates of the percentage of time that concentrations and loads are exceeded during different phases of disturbance. This study assessed the changes in regression relations due to mining coal seams and reclamation activities for 36 chemical constituents, two mining methods, three reclamation practices and three distinct geologic settings.  相似文献   

5.
Abstract

Water resources management should cover both blue water and green water. For green-water management at the river drainage basin scale, the green-water coefficient (C gw) is adopted, defined as the ratio of annual green water to annual precipitation. Based on data from the Middle Yellow River basin, China, for the period 1950 to 2007, we studied the temporal variation in C gw in response to some influencing factors. A decreasing trend in C gw was found. The influence of changes in land management on C gw, reflected by an increase in the area (A sw) of soil and water conservation measures, is emphasized. Using multiple regression analysis, the contributions of A sw and the 5-year moving averages of annual precipitation and air temperature were estimated as 51, 37 and 12%, respectively. The results may provide useful information for better management of water resources, including green and blue water flows in the Yellow River basin.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Xu, J.-X., 2013. Effects of climate and land-use change on green-water variations in the Middle Yellow River, China. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

6.
Abstract

The French national project IMAGINE2030 aims to assess future water availability in the Garonne River basin (southwest France) by taking account of changes in both climate and water management in the 2030s. Within this project, two mountainous drainage basins located in the Pyrenees were examined to assess the specific impact of climate change on reservoir management. The Salat River basin at Roquefort, is considered as a proxy (representative of a natural basin), whereas the Ariège River at Foix is influenced by hydropower production in winter and by water releases to sustain low flows in summer. The Cequeau rainfall–runoff model, combined with a simplified model of reservoir management operations, was calibrated on present-day conditions and forced with climate projections derived from the IPCC AR4 report. The results show that a warming climate over the basins induces a decrease in mean annual runoff, a shift to earlier snow melting in mountainous areas and more severe low-flow conditions. The simulations show a decrease in electricity generation. Under two water management scenarios (one “business-as-usual” and the other incorporating an increased downstream water demand in compliance with requirements for increased minimum flow), simulations for the Ariège River basin suggest an earlier filling of the reservoir is necessary in winter to anticipate the increased release from reservoirs in summer to support minimum flow farther downstream.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Hendrickx, F. and Sauquet, E., 2013. Impact of warming climate on water management for the Ariège River basin (France). Hydrological Sciences Journal, 58 (5), 976–993.  相似文献   

7.
Abstract

An analysis of a series of chalk samples from the Lublin coal basin reveals that its matrix is a very porous but only slightly permeable porous medium; its water reserves are hardly susceptible to gravity drainage. The interconnected porosity of the chalk matrix diminishes with depth, probably because of the increase in lithostatic pressure.  相似文献   

8.
Abstract

Runoff discharge in the Tuku lowlands, Taiwan, has increased with land development. Frequent floods caused by extreme weather conditions have resulted in considerable economic and social losses in recent years. Currently, numerous infrastructures have been built in the lowland areas that are prone to inundation; the measures and solutions for flood mitigation focus mainly on engineering aspects. Public participation in the development of principles for future flood management has helped both stakeholders and engineers. An integrated drainage–inundation model, combining a drainage flow model with a two-dimensional overland-flow inundation model is used to evaluate the flood management approaches with damage loss estimation. The proposed approaches include increasing drainage capacity, using fishponds as retention ponds, constructing pumping stations, and building flood diversion culverts. To assess the effects on the drainage system of projected increase of rainfall due to climate change, for each approach simulations were performed to obtain potential inundation extent and depth in terms of damage losses. The results demonstrate the importance of assessing the impacts of climate change for implementing appropriate flood management approaches.

Editor Z.W. Kundzewicz

Citation Chang, H.-K., Tan, Y.-C., Lai, J.-S., Pan, T.-Y., Liu, T.-M., and Tung, C.-P., 2013. Improvement of a drainage system for flood management with assessment of the potential effects of climate change. Hydrological Sciences Journal, 58 (8), 1581–1597.  相似文献   

9.
Abstract

This investigation presents a new approach to estimate the costs resulting from the introduction of environmental flows in the arid Huasco River basin, located in the Atacama Region of Chile, one of the most sophisticated private water markets worldwide. The aim is to provide information to the water users, who hold the right to decide on water use, and thereby support the inclusion of environmental flows into decision-making. Costs are estimated by calculating the loss of agricultural productivity resulting from a trade-off between users and environmental flow requirements in times of water scarcity. Based on environmental flow requirements calculated by International Union for Conservation of Nature (IUCN), and hydrological supply-and-demand modelling using the Water Evaluation and Planning (WEAP) model, economic parameters of water productivity are calculated for the main economic sectors and then included in hydrological analysis. The study presents concrete costs that might be imposed on the water users during times of water scarcity, and confirms that there are significant variations in water productivity between different sectors.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Wagnitz, P., Núñez, J., and Ribbe, L., 2014. Cost of environmental flow during water scarcity in the arid Huasco River basin, northern Chile. Hydrological Sciences Journal, 59 (3–4), 700–712.  相似文献   

10.
Abstract

Groundwater is an important water resource and its management is vital for integrated water resources development in semiarid catchments. The River Shiyang catchment in the semiarid area of northwestern China was studied to determine a sustainable multi-objective management plan of water resources. A multi-objective optimization model was developed which incorporated water supplies, groundwater quality, ecology, environment and economics on spatial and temporal scales under various detailed constraints. A calibrated groundwater flow model was supplemented by grey simulation of groundwater quality, thus providing two lines of evidence to use in the multi-objective water management. The response matrix method was used to link the groundwater simulation models and the optimization model. Multi-phase linear programming was used to minimize and compromise the objectives for the multi-period, conjunctive water use optimization model. Based on current water demands, this water use optimization management plan was able to meet ecological, environmental and economic objectives, but did not find a final solution to reduce the overall water deficit within the catchment.  相似文献   

11.
Abstract

The Baker basin (27 000 km2) is located in one of the most pristine and remote areas of the planet. Its hydrological regime is poised to undergo dramatic changes in the near future due to hydropower development and climate change. The basin contains the second-largest lake in South America, and part of a major icefield. This study documents the natural baseline of the Baker River basin, discusses the main hydrological modes and analyses the potential for sustainable management. Annual precipitation varies several-fold from the eastern Patagonian steppes to the North Patagonian Icefield. The westernmost sub-basins are strongly governed by glacier melt with a peak discharge in the austral summer (January–March). The easternmost sub-basins have a much more seasonal response governed by quicker snowmelt in spring (November–December), while they exhibit low flows typical for semi-arid regions during summer and autumn. Topography, vegetation and wetlands may also influence streamflow. The strong spatio-temporal gradients and variability highlight the need for further monitoring, particularly in the headwaters, especially given the severe changes these basins are expected to undergo. The great diversity of hydrological controls and climate change pose significant challenges for hydrological prediction and management.

Editor Z.W. Kundzewicz

Citation Dussaillant, J.A., Buytaert, W., Meier, C., and Espinoza, F. 2012. Hydrological regime of remote catchments with extreme gradients under accelerated change: the Baker basin in Patagonia. Hydrological Sciences Journal, 57 (8), 1530–1542.  相似文献   

12.
Abstract

A decadal-scale study to retrieve the spatio-temporal precipitation patterns of the Yangtze River basin, China, using the Tropical Rain Mapping Mission, Precipitation Radar (TRMM/PR) data is presented. The empirical orthogonal function (EOF) based on monthly TRMM/PR data extracts several leading precipitation patterns, which are largely connected with physical implications at the basin scale. With the aid of gauge station data, the amplitudes of major principal components (PCs) were used to examine the generic relationships between precipitation variations and hydrological extremes (e.g. floods and droughts) during summer seasons over the past decade. The emergence of such major precipitation patterns clearly reveals the possible linkages with hydrological processes, and the oscillations in relation to the amplitude of major PCs are consistent with these observed hydrological extremes. Although the floods in some sections of the Yangtze River were, to some extent, tied to human activities, such as the removal of wetlands, the variations in major precipitation patterns are recognized as the primary driving force of the flow extremes associated with floods and droughts. The research findings indicate that long-distance hydro-meteorological signals of large-scale precipitation variations over such a large river basin can be successfully identified with the aid of EOF analysis. The retrieved precipitation patterns and their low-frequency jumps of amplitude in relation to PCs are valuable tools to help understand the association between the precipitation variations and the occurrence of hydrological extremes. Such a study can certainly aid in disaster mitigation and decision-making in water resource management.

Editor Z.W. Kundzewicz; Associate editor A. Montanari

Citation Sun, Z., Chang, N.-B., Huang, Q., and Opp, C., 2013. Precipitation patterns and associated hydrological extremes in the Yangtze River basin, China, using TRMM/PR data and EOF analysis. Hydrological Sciences Journal, 57 (7), 1315–1324.  相似文献   

13.
Abstract

The Salar de Atacama is located in the most arid desert in the world. Despite its extreme conditions, it has many ecosystems of high ecological value. The Soncor ecosystem, a sequence of lagoons, is the most important environment of the region as it acts as the centre for the breeding of the Andean Flamingo. This salt flat also contains significant mining deposits and is an important water source for the region. Freshwater and brine—enriched in lithium and potassium—are being pumped from the aquifers near to the Soncor ecosystem, which has so far not been greatly affected by this groundwater extraction. However, there is a potential risk that future anthropogenic effects may disturb this fragile environment. The objective of this study is to determine the origin of the water sources of the Soncor ecosystem so as to adequately manage its water resources. Three hypotheses previously proposed in the technical literature were investigated in order to determine proactive actions to protect this fragile ecosystem. The study utilized classic hydrogeological techniques, such as the construction of stratigraphic profiles, piezometric maps and stream gauging, combined with less-common isotopic techniques, such as the 87Sr/86Sr ratio. The results confirmed the hypothesis that the origins of the water sources are associated with groundwater inputs coming from the east side of the salt flat, in the north of the basin.

Editor Z.W. Kundzewicz; Associate editor M. Acreman

Citation Ortiz, C., Aravena, R., Briones, E., Suárez, F., Tore, C., and Muñoz, J.F., 2014. Sources of surface water for the Soncor ecosystem, Salar de Atacama basin, northern Chile. Hydrological Sciences Journal, 59 (2), 336–350.  相似文献   

14.
Coal resources and water resources play an essential and strategic role in the development of China's social and economic development, being the priority for China's medium and long technological development. As the mining of the coal extraction is increasingly deep, the mine water inrush of high-pressure confined karst water becomes much more a problem. This paper carried out research on the hundred-year old Kailuan coal mine's karst groundwater system. With the help of advanced Visual Modflow software and numerical simulation method, the paper assessed the flow field of karst water area under large-scale exploitation. It also predicted the evolution ofgroundwaterflow field under different mining schemes of Kailuan Corp. The result shows that two cones of depression are formed in the karst flow field of Zhaogezhuang mining area and Tangshan mining area, and the water levels in two cone centers are −270 m and −31 m respectively, and the groundwater generally flows from the northeast to the southwest. Given some potential closed mines in the future, the mine discharge will decrease and the water level of Ordovician limestone will increase slightly. Conversely, given increase of coal yield, the mine drainage will increase, falling depression cone of Ordovician limestone flow field will enlarge. And in Tangshan's urban district, central water level of the depression cone will move slightly towards north due to pumping of a few mines in the north.  相似文献   

15.
Abstract

The effects of land use on river water chemistry in a typical karst watershed (Wujiang River) of southwest China have been evaluated. Dissolved major ions and Sr isotopic compositions were determined in 11 independent sub-watersheds of the Wujiang River to investigate the spatio-temporal variations in river water chemistry and their relationship to land use. The results show significant spatial variability in pH, major ions, total dissolved solids (TDS), and Sr isotopic compositions throughout the basin. Correlation analysis indicates that nitrogen content is significantly related to forest coverage. Nitrogen and potassium generally have higher values in the rainy season, and the percentage of agricultural land controlled NO3- levels, which originate from anthropogenic sources. Forest cover, which varies between 35% and 71%, has no statistically significant impact on river solute concentrations, but the TDS flux is low in sub-watersheds with greater forest cover. Geological sources have a significant influence on pH and Sr isotopic compositions in river water throughout the basin.
Editor D. Koutsoyiannis

Citation Han, G., Li, F., and Tan, Q., 2014. Effects of land use on water chemistry in a river draining karst terrain, southwest China. Hydrological Sciences Journal, 59 (5), 1063–1073.  相似文献   

16.
《水文科学杂志》2013,58(2):363-374
Abstract

Lake ?uvintas, located in southern Lithuania in the Dovin? River basin, is one of the largest lakes and oldest nature reserves in the country. However, changes in the hydrology of the Dovin? River basin, caused by large-scale land reclamation and water management works carried out in the 20th century, have resulted in a significant decrease in the biodiversity of the lake and surrounding wetlands. In order to halt the ongoing deterioration of the lake and wetlands, solutions have to be found at the basin level. Using the SIMGRO model, various measures were therefore analysed to evaluate their impact on the water management in the Dovin? River basin. The results show that it is impossible to fully restore the water dynamics and flow pattern in the Dovin? River to their original state. However, a good measure for improving the hydrological conditions is to block drainage ditches and remove bushes and trees from the wetlands.  相似文献   

17.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

18.
Abstract

The efficient planning and design of water networks, as well as the management and strategies of existing water supply systems, require accurate short-term water demand forecasts. In this study, a statistical model for the estimation of daily urban water consumption was developed. The model was applied to analyse and forecast the daily water consumption in the main district of Beijing, China, from 2006 to 2010. The model exhibited good performance with a coefficient of determination, R2, greater than 0.9 in both the calibration and validation periods. The results indicate that: (a) the 7-day moving average temperature is an efficient variable that can be used to depict water-use variation in a year; (b) a daily maximum temperature of 31.1°C and the occurrence of precipitation are two thresholds of water-use behaviour; and (c) the current day’s water consumption has a strong correlation with the consumption of one, two and seven days ago.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Zhang, D.W., et al., 2013. Statistical interpretation of the daily variation of urban water consumption in Beijing, China. Hydrological Sciences Journal, 59 (1), 181–192.  相似文献   

19.
It is forecasted that before the 2050s, coal would still make up 50%-60% of once energy constitution in China, but unfortunately, in most part of our coal districts and peripheral regions, we generally face the contradiction and conflict among the threat of water hazard, shortage of water resource and environmental protection, which are becoming more and more serious especially with a gradual increase in mining depth of the shaft and recovery of lower coal beds. The concrete expression is as f…  相似文献   

20.
ABSTRACT

Understanding of the effect of basin water resources utilization on lake nutrients is helpful to prevent lake eutrophication and facilitate sustainable water resources management. In this study, a lake basin dualistic water cycle system is established to identify the environmental effect of lake water. Four water utilization indicators were chosen to build a driving relationship with the lake nutrients. Three different trophic lakes in Yunnan Province, China – Dianchi, Erhai and Fuxian – were selected to demonstrate the changes in basin water utilization, runoff, nutrient loads and water-use indicators for the period 2000–2015. In addition, the driving forces of water-use indicators to nutrients (total nitrogen and total phosphorus) were analysed by a general additive model. Finally, an optimized water utilization system for each lake basin is proposed. The research provides a practical tool for water resources and environmental management in lake basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号