首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In the present study, the mean annual sediment inflow into Vistonis Lake (Thrace, northeastern Greece) was calculated. The sediment quantity originates mainly from the basins of Kossynthos, Kompsatos and Travos (Aspropotamos) Rivers. The whole basin area (mountainous part) contributing to the lake amounts to about 845 km2. The above mean annual sediment quantity was compared with the mean annual sediment accumulation in the lake. The latter quantity was estimated from the mean annual decrease of the lake water volume for a period of 22 years, which was determined by means of older and newer topographic maps (isobath contours). For the calculation of the mean annual sediment yield at the outlets of the three above mentioned basins, a mathematical model consisting of three submodels was used: a rainfall-runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. The comparison of the computational results by means of the mathematical model with the estimation results by means of the topographic maps is satisfactory and encouraging.  相似文献   

3.
Abstract

Placer mines are located in river valleys, along river benches, or along the pathways of ancient channels. Open-pit mining alters the stream hydrology and enhances sediment transport. The present study focuses on sediment transport in the area of the platinum placer mining located at the north of Russia’s Kamchatka Peninsula (Seynav-Galmoenan placer deposits). Based on hydrological field investigations, a conceptual model was derived to assess anthropogenic effects on the total sediment budget of rivers. The model illustrates key processes controlling sediment dynamics in the Vyvenka River basin. Field work included water-discharge and sediment-load measurements, assessment of annual channel change in rivers in mining site areas, and evaluation of the relative importance of sediment sources and transport processes. In this study, we estimated total sediment delivery from opencast placer mining of 60 t year-1; the annual mass wasting rate ranges from 2 to 5.5 kg m-2 year-1, which is three orders of magnitude higher than from non-mined streams. Mass wasting dominates surface erosion on the hillslopes and produces significant wastewater effluents; however, erosion of the artificially stratified channel reaches is the primary contributor to the annual sediment yield of the mined rivers (21.4%).
Editor D. Koutsoyiannis

Citation Chalov, S.R., 2014. Effects of placer mining on suspended sediment budget: case study of north of Russia’s Kamchatka Peninsula. Hydrological Sciences Journal, 59 (5), 1081–1094.  相似文献   

4.
Abstract

Rainfall–runoff induced soil erosion causes important environmental degradation by reducing soil fertility and impacting on water availability as a consequence of sediment deposition in surface reservoirs used for water supply, particularly in semi-arid areas. However, erosion models developed on experimental plots cannot be directly applied to estimate sediment yield at the catchment scale, since sediment redistribution is also controlled by the transport conditions along the landscape. In particular, representation of landscape connectivity relating to sediment transfer from upslope areas to the river network is required. In this study, the WASA-SED model is used to assess the spatial and temporal patterns of water and sediment connectivity for a semi-arid meso-scale catchment (933 km2) in Brazil. It is shown how spatial and temporal patterns of sediment connectivity within the catchment change as a function of landscape and event characteristics. This explains the nonlinear catchment response in terms of sediment yield at the outlet.

Citation Medeiros, P. H. A., Güntner, A., Francke, T., Mamede, G. L. & de Araújo, J. C. (2010) Modelling spatio-temporal patterns of sediment yield and connectivity in a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J. 55(4), 636–648.  相似文献   

5.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Coastal erosion that is generated by the reduction of the annual sediment yield at river outlets, due to the construction of reservoirs, constitutes one of the main environmental problems in many parts of the world. Nestos is one of the most important boundary rivers, flowing through Bulgaria and Greece, characterized by its great biodiversity. In the Greek part of the river, two reservoirs, the Thisavros Reservoir and the Platanovrysi Reservoir, have already been constructed and started operating in 1997 and 1999, respectively. The present paper constitutes the first attempt where the assessment of reservoir sedimentation effect on the coastal erosion for the case of the Nestos River delta and the adjacent shorelines is addressed in detail, through mathematical modeling, modem remote sensing techniques and field surveying. It is found that the construction and operation of the considered reservoirs have caused a dramatic decrease (about 83%) in the sediments supplied directly to the basin outlet and indirectly to the neighbouring coast and that this fact has almost inversed the erosion/accretion balance in the deltaic as well as the adjacent shorelines. Before the construction of the reservoirs, accretion predominated erosion by 25.36%, while just within five years after the construction of the reservoirs, erosion predominates accretion by 21.26%.  相似文献   

7.
《水文科学杂志》2013,58(6):1253-1269
Abstract

Although soil erosion has been recognized worldwide as a threat to the sustainability of natural ecosystems, its quantification presents one of the greatest challenges in natural resources and environmental planning. Precise modelling of soil erosion and sediment yield is particularly difficult, as soil erosion is a highly dynamic process at the spatial scale. The main objective of this study was to simulate soil erosion and sediment yield using two fundamentally different approaches: empirical and process-oriented. The revised form of the Universal Soil Loss Equation (RUSLE), along with a sediment delivery distributed model (SEDD) and the Modified Universal Soil Loss Equation (MUSLE), which are popular empirical models, were applied in a sub-basin of the Mun River basin, Thailand. The results obtained from the RUSLE/SEDD and MUSLE models were compared with those obtained from a process-oriented soil erosion and sediment transport model. The latter method involves spatial disaggregation of the catchment into homogeneous grid cells to capture the catchment heterogeneity. A GIS technique was used for the spatial discretization of the catchment and to derive the physical parameters related to erosion in the grid cells. The simulated outcomes from the process-oriented model were found to be closer to observations as compared to the outcomes of the empirical approaches.  相似文献   

8.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

9.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

10.
Abstract

Tile drainage influences infiltration and surface runoff and is thus an important factor in the erosion process. Tile drainage reduces surface runoff, but questions abound on its influence on sediment transport through its dense network and into the stream network. The impact of subsurface tiling on upland erosion rates in the Le Sueur River watershed, USA, was assessed using the Water Erosion Prediction Project (WEPP) model. Six different scenarios of tile drainage with varying drainage coefficient and management type (no till and autumn mulch-till) were evaluated. The mean annual surface runoff depth, soil loss rate and sediment delivery ratio (SDR) for croplands, based on a 30-year simulation for the watershed with untiled autumn mulch-till (Scenario 1), were estimated to be 83.5 mm, 0.27 kg/m2 and 86.7%, respectively; on no-till management systems (Scenario 4), the respective results were 72.3 mm, 0.06 kg/m2 and 88.2%. Tile drains reduced surface runoff, soil loss and SDR estimates for Scenario 1 by, on average, 14.5, 8.1 and 7.9%, respectively; and for Scenario 4 by an estimated 31.5, 22.1 and 20.2%, respectively. The impact of tile drains on surface runoff, soil loss and SDR was greater under the no-till management system than under the autumn mulch-till management system. Comparison of WEPP outputs with those of the Soil Water Assessment Tool (SWAT) showed differences between the two methods.

Editor Z.W. Kundzewicz

Citation Maalim, F.K. and Melesse. A.M., 2013. Modelling impacts of subsurface drainage on surface runoff and sediment yield in the Le Sueur Watershed in Minnesota, USA. Hydrological Sciences Journal, 58 (3), 570–586.  相似文献   

11.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Future sediment dynamics may be affected by changing climates or hydrological regimes because of the close link between hydrology and sediment erosion, deposition, and transport. Previously, investigations of these potential changes have been constrained by a combination of limited observational data, hydrological drivers, and appropriate mechanistic models. Additionally, there is often ambiguity regarding how to disentangle the impacts of climate and hydrology from direct human factors such as reservoirs and land‐use change, which often exert more control over sediment dynamics. In this study, we utilize a recently developed, large‐scale, distributed, mechanistic sediment transport model to project future sediment erosion, deposition, and transportation within the Fraser River Basin in British Columbia, Canada—a basin with historical water flux and sediment load observations and limited anthropogenic influences upstream of its delta. The sediment model is driven by synthetic land‐surface hydrology derived from Scenarios A1B, A2, and B1 of the Special Report on Emissions Scenarios, which were provided by the Pacific Climate Impacts Consortium. Resulting simulations of water flux and sediment load from 1965 to 1994 are first validated against observational data then compared with future projections. Future projections show an overall increase in annual hillslope erosion and in‐channel transportation, a shift towards earlier spring peak erosion and transportation, and longer persistence of the sediment signal through the year. These shifts in timing and annual yield may have deleterious effects on spawning sockeye salmon and are insufficient to counteract future coastal retreat caused by sea‐level rise.  相似文献   

13.
Long‐term erosion monitoring data in the Ethiopian highlands are only available from the Soil Conservation Research Program (SCRP) watersheds including the Anjeni watershed. The 113 ha Anjeni watershed was established in 1984 and fanya juu terraces were installed in 1986. Runoff and erosion data are available from three different plot sizes and at the watershed outlet. The objective of this study was to investigate how erosion processes and sediment rating parameters vary with plot size and the progression of the rainy monsoon phase. We analyzed runoff and sediment loss data from 40 plots and the watershed outlet. The dataset included erosion data from 24 newly constructed plots (3 m length) during the rainy monsoon phase of 2012 and 2013, and 16 long‐term plots (with 12, 16, 22, and 24% slopes and 3, 15 and 30 m lengths) and the watershed outlet during the period between 1986 to 1990. Sediment concentration (C) was fitted to runoff (Q) using a power regression equation (C = aQb). Sediment concentration and yield increased with increasing plot length from 3 m to 15 m, but sediment yield decreased as plot length increased to 30 m.The coefficients (a and b) were affected by plot size and the progression of the rainy monsoon phase. As plot size increases, the a value increased, while the b value decreased. Greater a values were observed during the beginning of the monsoon phase, while values of b were greater towards the end of the monsoon phase. Overall findings suggest that erosion from cultivated fields is primarily controlled by transport limitations at the beginning of the monsoon phase, while towards the end of the monsoon phase, as surface covers emerge, sediment availability will be reduced, and thus sediment source would be a limitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2013,58(2):448-456
Abstract

The temporal variation in the specific sediment yield in the Wadi Mouilah basin in northwestern Algeria was determined using data obtained between 1977 and 1995. The results show that, contrary to previous estimations, the watershed is not subject to significant degradation. This is due to its lithology and configuration. The average specific sediment yield over 18 years of measurement is only 165 t km?2 year?1, of which, over 65% occurs in the autumn. Moreover, 97% of solid transport occurs during the brief floods whose peak discharge determines the liquid and solid contributions. Furthermore, the relationship between the flow and the specific sediment yield, at the annual level, highlights a significant departure from relationships suggested for watersheds similar to Wadi Mouilah.  相似文献   

15.
A hydrology–sediment modelling framework based on the model Topkapi-ETH combined with basin geomorphic mapping is used to investigate the role of localized sediment sources in a mountain river basin (Kleine Emme, Switzerland). The periodic sediment mobilization from incised areas and landslides by hillslope runoff and river discharge is simulated in addition to overland flow erosion to quantify their contributions to suspended sediment fluxes. The framework simulates the suspended sediment load provenance at the outlet and its temporal dynamics, by routing fine sediment along topographically driven pathways from the distinct sediment sources to the outlet. We show that accounting for localized sediment sources substantially improves the modelling of observed sediment concentrations and loads at the outlet compared to overland flow erosion alone. We demonstrate that the modelled river basin can shift between channel-process and hillslope-process dominant behaviour depending on the model parameter describing gully competence on landslide surfaces. The simulations in which channel processes dominate were found to be more consistent with observations, and with two independent validations in the Kleine Emme, by topographic analysis of surface roughness and by sediment tracing with 10 Be concentrations. This research shows that spatially explicit modelling can be used to infer the dominant sediment production process in a river basin, to inform and optimize sediment sampling strategies for denudation rate estimates, and in general to support sediment provenance studies. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
《水文科学杂志》2013,58(1):166-170
Abstract

Freshwater and sediment are crucial to the development and health of aquatic and wetland ecosystems in deltaic coastal regions. This study examines the long-term freshwater inflow (1940–2002) and total suspended solid loading (1978–2001), and their relationships with climate variables in three major river watersheds to Lake Pontchartrain, the largest inland estuary in the USA. The results show an average total annual freshwater inflow of 5.04 km3 and an average total annual sediment loading of 210 360 t, with the highest contributions from the Amite River watershed. Over 69% of annual inflow occurred within the six months from December to May. About 66–71% of the annual total suspended solid loading occurred within the four months from January to April. An increasing trend of annual water inflow and sediment discharge was found in the Amite River watershed over the past 60 years, coinciding with the fastest population growth in this upper Lake Pontchartrain basin.  相似文献   

17.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   

18.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
《水文科学杂志》2013,58(6):899-915
Abstract

The results are described of 16 years operation of a measuring station for the automatic recording of water discharge, bed load and suspended sediment transport in the Rio Cordon catchment, a small alpine basin (5 km2) located in northeastern Italy. Hillslope erosion processes were investigated by surveying individual sediment sources repeatedly. Annual and seasonal variations of suspended sediment load during the period 1986–2001 are analysed along with their contribution to the total sediment yield. The results show that suspended load accounted for 76% of total load and that most of the suspended sediment transport occurred during two flood events: an extreme summer flash flood in September 1994 (27% of the 16-years total suspended load) and a snowmelt-induced event in May 2001 accompanied by a mud flow which fed the stream with sediments. The role of active sediment source areas is discussed in relation to the changes in flood peak—suspended load trends which became apparent after both the 1994 and the 2001 events.  相似文献   

20.
长江流域水库"过滤器效应"对入海溶解硅通量的影响   总被引:3,自引:2,他引:1  
根据1960-2000年间长江大通水文站记录的水、沙以及硅、氮、磷等数据,结合1954-2006年间长江流域库容大于108 m3的162座水库的库容、上游径流量、总磷等数据,利用Vollenweider模型分析了水库"过滤器效应"对入海溶解硅(DSi)通量的影响.结果表明:1)1990s相比1960s,长江入海DSi通量下降了约1.85×106 t/a,减少了大约25.3%;入海DSi通量的下降与流域径流波动、入海悬沙通量下降以及溶解无机氮通量的增加紧密相关.2)流域水库明显改变径流的自然过程,增加径流的滞留时间,流域90%以上的水库对上游径流的滞留时间超过0.05年,水库产生显著的DSi"生物过滤器"效应.模型计算显示流域大型水库对DSi的累计滞留量可达0.85×106 t/a,占年均入海DSi通量(1990-2000年)5.4×106 t的15.7%,是入海DSi通量减少量(1.85×106 t/a)的45.9%.3)根据保守估计,流域162座大型水库内泥沙累计淤积量达6.75×108 t/a,不仅使悬沙入海通量显著下降,而且造成大量颗粒吸附的外源和内源DSi颗粒沉淀,这对入海DSi通量减少也起到重要贡献.但目前对水库"泥沙过滤器"的滞留机理并不清楚,需要展开进一步的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号